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RADIO WAVES

What makes them go

by “‘Cathode Ray'’

Someone who read what I had to say in
the September and October 1974 issues,
on magnetism being a side effect of
electricity (and it’s nice to know that at
least one person did so) asked me if I
would care to go on and deal with
electromagnetic waves, and in
particular to derive from first principles
their velocity and “the impedance of
space.”

There are three approaches to
electromagnetic (or radio) waves.
Those of you who .are well versed in
vector analysis and three-dimensional
differential equations will no doubt
follow in the footsteps of Clerk
Maxwell, with the advantage over him
of being able to see and hear the
multifarious practical results now
obtained with the waves that Maxwell
predicted mathematically. Others will
be content to enjoy those results,
without any overwhelming urge to
inquire into their theory. Members of
these two classes may now disperse and
employ their time more profitably
elsewhere, as I am about to address
myself exclusively to any who do wish
to know what makes electromagnetic
waves go, but lack the mathematical
expertise needed for taking Maxwell’s
way.

Electromagnetic (e-m) waves consist
entirely of electric and magnetic fields.
Most of us are more at home with
circuits, amps and volts than with fields.
Transmission lines (or high-frequency
cables) offer themselves as a bridge
from one to the other. So let us adopt
that way of approach to free-travelling
e-m waves.

In ordinary circuits, resistance,
inductance and capacitance are
regarded as if they were confined to the
places indicated by their symbols in the
circuit diagram — the components. The
rest of the circuit — the wiring — is there
just for connecting up the components,
and not for contributing any R, L and C
of its own. In so far as these qualities are
inevitably present to some extent in the
wiring, they are just unwanted
complications which we hopefully
neglect.

If transmission lines are regarded in
this way, as they well might be by an
electrician, they look like just wiring,

needed to connect units that
unfortunately have to be installed at a
distance from one another; the
radio-frequency counterpart of the flex
needed to connect the TV set to the
mains socket. It is true that in both of
these types of electrical link we would
like the resistance to be small enough to
neglect. If the resistance of the flex is
enough to cause a noticeable loss of
volts at the appliance, a heavier gauge
of wire is indicated. Transmission lines,
being-in general much longer than flex
leads, their resistance usually does
cause appreciable loss en route. But at
least they do not (as would too-resistive

a flex) constitute a fire risk!
At the mains frequency the

inductance and capacitance of a few
yards of flex are truly negligible. But at
the multi-million times greater
frequency of the incoming signals, and
with the greater length of the cable, one
would quite rightly estimate that the
capacitance between its two conductors
would be very far from negligible, and
perhaps expect this capacitance to be
almost a short-circuit for the signals,
allowing very little to reach the
receiving end. But in spite of the two
conductors being so close together — in
the common coaxial type, one actually
surrounding the other — so that the
magnetic effects of currents in them
tend to cancel out, there is enough
inductance to have a profound effect.
Just as the total capitance is distributed
in parallel all along the line (assumed to

be uniform), so the total inductance is,

distributed in series. Electrically, the
line can be represented as in Fig. 1,
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Fig.1 An ideal transmission line can be
considered as a circuit in which the
distributed capacitance and
inductance are represented as a very
large number of very small capacitors
and inductors.
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where L and C are respectively the
inductance and capacitance per (very
small) unit length of the cable.

Next, let us consider the effective
resistance of the TV set or whatever the

cable is feeding into, R in Fig. 2(a). It

probably won’t be a pure resistance, but
it can always be made so by tuning; and
that gets rid of one complication. Now
we connect to it one of our very short
unit lengths of cable, Fig. 2(b). It is so
short that the series inductive reactance
X,, which is 2nfL, is very small
compared with R; and the parallel
capacitive reactance X, which is
1/2=fC, is very large compared with R.
That being so, the series capacitance C’
in Fig. 2 (c) is (near enough) electrically
equivalent to Cin (b) if its reactance, X'
is equal to R*/X..* X, and X', being
respectively positive and negative reac-
tances, cancel out if X;’ = X,;. Fig 2(c),
and therefore very nearly (b) also, is
electrically the same as (a). For this to
be true, R?/X. must be equal to X, so

SoR=\— (€8]

Notice that frequency doesn’t come into
this at all, except that if it is very high
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Fig.2 By selecting a suitable value of
load resistance R, a pair of the small
units of L and C in Fig.1 connected to it
(b) can be made of ng effect, because
the seriessequivalent of C (C’ at (c))
cancels out L. This process can be
repeated until any length of line
terminated by R is found to be
equivalent, as an impedance, to R
alone.

then L and C have to very small indeed
to fulfil the condition that X >R »X
The process of finding a Fig. 2(b)
equivalent to (a) can then be repeated
indefinitely, so that any length of cable
terminated by a resistance is electrically
the same as the resistance alone,
provided that eqn.(1) is true, subject to
the approximation we used. The smaller
X-and X, are, the smaller is the error in
assuming X =R?/Xc, so by making
them smaller and smaller and
increasing their number
correspondingly, ultimately making
Fig. 1 equivalent to a real cable, we can
make the error as near zero as we like.
So to make a line or cable ideal for

*Foundations of Wireless & Electronics, 8th
edition, M. G. Scroggie; Sec. 8.16. See also Sec.16.2.
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conveying radio signals from one place
to another we have to ensure that its
inductance and capacitance per unit
length (not necessarily small at low
frequency) are related to the load
resistance R thus: R = ' (L/C).L and C
depend on the cross-sectional
dimensions of the cable, and there is
only a limited range of practical values
of these, so it is usual to fit R to them,
rather than v {L/C) to R. The resistance
V(L/C) is usually called the
characteristic resistance of the cable
and denoted by R, (It is also called
characteristic impedance and denoted
by Z,; this covers the fact that the effect
of resistance of the line conductors
introduces reactance along with R,.).
Owing to the way in which it was
derived with the help of Fig. 2, R, can
also be regarded as the input resistance
of an infinitely long line.

How does one find L and C? Well, of
course, they can be measured.
Calculating them for practical lines and
cables (parallel-wire or coaxial) is
rather complicated. But although not a
very practical form, there js no
theoretical reason why a transmission
line should not consist of two parallel
metal strips as in Fig. 3. This is much
easier for calculating L and C at least

!
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Fig. 3 A simple, if unusual, form of
transmission line is a pair of parallel
metal strips.

approximately, and, as we shall see, it is
a very convenient form for studying the
whole subject.

Although thinking a thing out from
fundamental principles is usually
harder work than remembering a handy
formula or looking it up in a book, it
should be worth it in this case. So we
start with the standard definition of the
capacitance between two conductors as
the electric charge (positive on one
conductor; negative on the other) per
volt needed to put it there:

Q

C=% @
(Until further notice I'm going to use
the symbols C and L in a general sense;
not per unit length as in Figs. 1 and 2.)
And the inductance of a circuit or part
thereof is defined as the voltage induced
in it per amp-per-second variation in the
current flowing through it:

A%
L=—_ 3
di/dt @

Although defined thus, capacitance and
inductance are really effects of electric
and magnetic fields respectively, and
we won't be able to get far without

il
l \/ V=Eq
L ~X

area A

Fig.4 A short length of the Fig.3 type of
line can be treated as a «capacitor.

accepting that fact. Electric field is
denoted by E, and is the voltage per
metre between two points at different
potential (Fig. 4). So

1
E=— @
That connects with the V in (2).
Associated with E is what is called
electric flux density or displacement, D,
which is equal to the charge on the plate
per unit area:

_Q
D—A ®)

(This equation is a form of Gauss’s
theorem.) D and E are related to one
another by a property of whatever
material or non-material fills the space
between the plates — its permittivity, e

D= ¢E (6)

So, substituting for Q and V in (2), from
(4)-(6), we get
_AD Ac

=487 A% 7
dE d farads O]

which I hope you will recognise as the
well known formula for the capacitance
of a parallel-plate capacitor in SI units.
It would be very inaccurate for a
capacitor like the one in Fig. 4 because
there would be a lot of stray field
besides that directly between the plates;
this is usually referred to as edge effect,
and is much less if (as in practice) the
plates are very close together.
Obviously we can apply (7) to
calculating the capacitance between
the strips in Fig. 3, per small length, or
per metre, or for the whole

But now let us go back to inductance,
eqn. (3). A coil has an inductance of 1
henry if 1 volt is induced in it when the
current is changing at a steady rate of 1
amp per second. But what induces the
e.m.f. is not the varying current itself
but the varying magnetic flux due to the
current and linked with the coil. In SI
units the voltage induced is equal to the
rate at which the flux is changing, so if 1
amp in the coil causes & units of flux
the inductance is equal to . In other
words, the inductance is equal to the
flux per amp:

L= o )]

I
We can make a sort of coil of Fig. 3 if
we short-circuit a length W at both ends
and circulate a current I around this
“coil®. The flux passes through the
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“core” of this coil and doubles back to
complete a loop around the current, as
indicated in Fig. 5 by only two dotted
lines, which represent the continuous
flux filling the whole core. Its
conventional direction, for a clockwise
current, is inwards as shown
(corkscrew rule). The flux density,
denoted by B, is equalto ¢ divided by
the cross-sectional area A of the
“window” inside the coil:

d

n €))
This A is not the same as in (5) of course,
but in this case is equal to Wd. The
current itself is also involved because
the magnetic field strength H inside the
coil is equal to the encircling current per
;mit length of the ¢ path (Ampere’s
aw):

_1

H-l

10

But B and H are related to one another
by a property of the material or
non-material in which they occur - its
permeability, u:

B=pH an
So, substituting for d and I in (8) we get

A
L= 12)

Strictly, except where H is constant
all the way [ around its loop (which is
very rarely) Hl in (10) must be { H.dl;

Fig.5 By adding short-circuiting pieces
at the ends, the bit of line in Fig.4 can
be made into an elementary coil.

but in Fig. 5 the external path of H (and
@) is so much fatter than the internal
one that, provided d/w is small, the only
part of | that need be counted is the
internal part, w. So approximately in
this case.

>

L= 2% henries (13)
w
This is analogous to (7), but we must
remember that A means different things
in (7) and (13). Incidentally, the
approximation error (“end effect”) in
(13) due to w not being the whole path
of B is analogous to the “edge effect” in
(7); but whereas (7) gives too low a
value for C, it should be fairly obvious
that (13) gives too high a value for L.
Now at last we can combine (7) and
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(13) to find approximately the
characteristic resistance R, of the Fig. 3
form of line. To simplify matters and get
rid of the ambiguity of the symbol A we
shall take a section of line 1 metre long,
so that A in (7) is equal to w, and A in
(13) is equal to d. If you object that 1
metre is not short enough to be valid in
the argument based on Fig. 2, my reply
is that it is good enough for relatively
long waves (low frequencies) and to suit
high frequencies you can reduce the
scale. And if you point out that the line
doesn’t have short-circuits every metre
along its length as in Fig. 5, the answer
is that it doesn’t need to, as current can
flow freely along both strips, and is
equal and opposite in them, just as in
Fig: 5. So for Fig. 3, remembering that L
and C are now per unit length again,

L pd  €ew _d
= —=f e L
R,=y C Y w/ a ~w' e (14)

The values of p and €. for air are almost
the same as for a vacuum, g, and ¢ o
which are 47 X 107 and 8.854 X 10-12
respectively. So v (u/€) = 377. For
example, if the width of the strips in Fig.
3 was 10 times their separation, R, for
this line would be 37.7Q}approximately
(owing to edge and end effects it would
be rather less).

The R, of a line or cable terminated
by a resistance equal to R, being
equivalent to that same resistance so far
as any generator connected to it is
concerned, R, is also the ratio of voltage
to current at the point of connection
and (as will be clear from the argument
illustrated by Fig.2) at every point along
the line, right up to the load. This is
practically so even if the line loss
moderately reduces the actual values of
V and I between generator and load.

The fact that a low-loss line with
suitably chosen L and C is electrically
equivalent to the resistance connected
to the far end does not, of course, mean
that the generator signal arrives at the
far end instantaneously. When the
generator (such as an aerial) feeds the
first positive half-cycle into its end of
the line, it starts to charge the
capacitance of that end, say one of the C
units in Fig.1, but the current that tries
to go on from there to charge the next
unit is delayed by the first series
inductance L. And so on. So the signal
waveform travels along the line at a
certain speed, rather like the wave one
can make by waggling the end of a long
stretched rope.

What speed?

We can look again at Fig.3 and,
denoting the voltage and current at the
start by V and I (V/I being R;) we
calculate the charge on the upper strip
(the lower one being assumed earthed)
per unit length, from (2) and (7):

ewv
d

The current I along the line is the
amount of charge passing any fixed
point per second, so if we call the

Q=CV=

velocity of the charge along the line v,
we have

ewVy
I= =—
Qv d
therefore v= Id = —d——
cwv €WR,
and substituting from (14)
1
= 15
e (15)

In space, where ¢ and . are ¢, and g,
this works out at nearly 3 X 10% metres
per second, which is the speed of light,
usually denoted by c. Together with
much other convincing evidence, this
discovery led to the conclusion that
light is electromagnetic, differing from
radio waves. only in its much higher
frequency.

In air, € and p are very slightly
greater than ¢, and p, so the wave
speed is very slightly (negligibly for
most purposes) lower. But practical
lines have to rely on solid insulating
spacers with values of ¢ several times
greater than ¢, so the wave speed
therein may be much less than ¢, and
the wavelength along the line, at a given
frequency, much less than in air.

Note that as V/I=R, everywhere
along the line, voltage and current are
everywhere in phase, so they carry
energy along the line, stored in the
travelling electric and magnetic fields.
Comparing Figs. (4) and (5) we see that
these fields must be at right angles to
one another and to the direction of
wave motion. I don’t want to get
sidetracked here by the subject of
polarization but just mention in passing
that the direction of polarization is
conventionally that of the electric field;
vertical in Fig.3: That is why receiving
dipoles for vertically polarized waves
should be vertical. But e-m waves don’t
have to be like this, polarized in one
direction (“linearly polarized”); they
can be all mixed up.

Fig.6 shows diagrammatically the
electric (E) and magnetic (H) field

E
/\ ,/A,"—} direction of
vd |7 -
s 7 \P2., ”,’ /wav; motion
-~ - o

Fig.6 Plane, linearly-polarized
electromagnetic waves consist of an
electric field pattern, shown here in the
vertical plane, accompanied by a
similar magnetic field at right angles to
it and to the direction in which the
whole pattern is moving.

E

strengths in three-dimensional space
between the conductors of a
transmission line when vertically-
polarized sinusoidal waves are going
along it from left toright. If either Eor H
were reversed in phase, the waves
would be going from right to left.
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All this may be all very well, you may
say, but when are we going to get free
from lines and cables? How can the
waves exist without charges or
currents? Well, we know (I hope) that
although each of the imaginary flux
lines between the capacitor plates in
Fig.4 begins on a positive charge and
ends on a negative charge, and E is
inevitably present around any charge,
charges are not the only cause of E. The
other cause is variation of a magnetic
field (Faraday's law of e-m induction)*.
It happens in every power station and
transformer. The basic principle of
electric generators is V=Bvl, V being
the voltage generated in a straight
conductor of length | cutting a
magnetic field of flux density B at
velocity v. But even if the conductor
were not there the potential difference
in space would be, and p.d. is a measure
of the electric field between the ends of
the length [, because over a length [ it
adds up to V. So a more fundamental
equation is E=Bv. Or in terms of
magnetic field strength H, E=pHv.

But how does a magnetic field come
into existence where there are no
electric currents? Even the field around
a permanent magnet is caused by
electric currents on an atomic scale in
the magnet material. We go back to
eqn.(10) for the basic principle
(Ampere’s law). Put more correctly it
says that the magnetomotive force
(m.m.f.), { Hdl, is equal to ], the current
enclosed by an H loop of length I. Now
look at Fig.7, which shows a capacitor C

&

Fig.7 Although the space between
capacitor plates ¢arries no current in
the ordinary sense, there is a
“displacement current” which
produces the same magnetomotive
force around it as every other part of
the circuit.

in process of being charged. The
charging current is flowing in the
direction conventionally shown by the *
arrow [, and of course is diminishing as
time goes on. Exactly proportional to
this current at all times, and
numerically equal to it in SI units, is an
m.m.f. everywhere around the current,
indicated at one point in the circuit by a
ring. The arrow head on this ring is
conventionally related to the current
arrow by the corkscrew rule. Having
recapped on the familiar circuit

‘situation, let us shift our attention to

the space between the plates, which are

*Discussed in “What is em.f.?", August 1974 issue.
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wider apart than usual in order to make
this easier.

It will be generally agreed that no;

current, in the ordinary sense, is flowing
across the space between the plates.
There is, as one would say, a break or
gap in the circuit. But is there a gap in
the m.m.f.? I've never done ‘the
experiment, but I'm sure that if a
magnetic needle were to be suspended
near the plates, with precautions to
prevent it from being affected by the
rest of the circuit, it would respond to
this non-existent current. For I trust
James Clerk Maxwell, who decided
theoretically (and, for all I know
without being able to look it up,
experimentally) that there is indeed an
m.m.f. around the space between the
plates, caused by what he called
displacement current. We have come
across displacement already, in eqn.(5),
as the electric flux density between
opposite charges. The total

displacement or flux over an area A is

therefore AD, and, as (5) said, this is
equal to Q, the total charge on either
plate. The circuit current [ is equal to
the rate at which charge is moving
along, but in the capacitor this charge is
not moving along but is accumulating
on the plates. However, it makes the
displacement increase. The rate of
increase of total displacement being
equal to the rate of increase of charge, it
is also equal to the circuit current, I. So
if displacement current is defined as the
rate of change of total displacement, it
is always equal to I. So the m.m f. ring
around C is the same amount as around
I anywhere else. o

At a fixed point P, in Fig.6, E is at this
moment at a positive maximum and H
likewise (if positive is towards us). At P,
they are both maximum negative. The
rapid change from E at P, to —E half a
cycle later was supposed to be due to a
negative charge on the upper metal
strip being replaced by a positive
charge, brought about by current along
the strip between P, and P,. But if we
remove the strips and join up the
opposite E lines at P, and P, into
complete loops as in Fig.8, the

Pa Py

Fig.8 Although Fig.6 was based on the
existence of electric charges moving
along conductors (Fig.3), waves
continue when the conductors are
removed, because the fields join up to
replace them, as far example this
electric line of force at the P -P, section
in Fig.6.

movement of this loop rightwards for
half a cycle is accompanied by a
displacement current in space where
the conduction current used to be. This
rapid change in displacement D causes a
magnetic field H just as any ordinary
current would. We have already noted
that E=Bv=pHv. Without going into
the full derivation we can now be pretty
sure (by the principle of duality I so
often cite). that the counterpart is true:
H'=Dv=¢ Ev. 1 have called the
generated magnetic field H’' to
distinguish it from H, as in general the

two are not necessarily equal. But for

the two fields to keep one another
going, H' must be equal to H, which in
the first equation is equal to E/pv.
Substituting this in the second, we get

€ Ev= E
uv
from which V= — (16)
Vep

which is the same as (15) derived from
currents and charges.

Since e-m waves are thus able to get
along quite nicely without currents and
charges, what exactly is the role of the
hardware, especially as its resistance
weakens the waves by a few dB per 100
metres? The quick answer is that it
guides them from A to B, when that is
what is wanted rather than
broadcasting. But how?

An air-cushion-shaped wave like
Fig.8 has parts at top and bottom that
are not wholly vertical. These will
therefore expand upwards and
downwards as well as forwards. In three
dimensions it will expand sideways as
well, and in fact all around. (The same
applies to the magnetic field, not even
suggested in Fig.8 but there in real
waves.) If (say) an electric wave front
expanding upwards hits a horizontal
conducting surface, the field lines will
not be at right angles to it. So they will
have a component parallel to it, along
the surface of the metal. But it is
impossible for two points in or on a
perfect conductor to be at different
potentials. So where an electric field
ends on a conductor the direction of the
field must be wholly at right angles to
the conductor.

That being so, the wave front inside a

transmission line must be a plane at

right angles to the conductors and to
the direction of wave travel. Which, not
surprisingly, is why the waves are called
plane waves. The conductors eliminate
all field components of the waves that
are not directly forward. (I have said
nothing about the magnetic- field,
because it is obvious that if any part of
the electric field is eliminated the
corresponding part of the magnetic field
has nothing left to keep it in existence.)

It is not essential to have two
conductors for this guiding action; in
certain circumstances an empty tube
will do, called a waveguide. But that is
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too long a story to start on now. If
anyone asks me kindly 1 might tell it
some other time. But I do just have
room to fulfil my promise about the
impedance of space. We found that a
transmission line or cable that is
loss-free and infinitely long has an input
resistance that is
L d p
R=VT™w €
The awkward bit about being infinitely
long can be got round by substituting
any length you like provided that the far
end is connected to a resistance equal to
R, nobody will notice the difference at
the input end because there won’t be
any difference there. If we imagine
ourselves inside an enormous line of the
Fig.3 type, looking towards the far end,
we can consider one metre square of the
cross section of space confronting us.
By thus making d=w=1 so far as the
space is concerned, we get /(n/€)
as the resistive impedance of
space (since it is not concerned at all
with the dimensions of the line). Let us
call this resistance Rg In fact, the line
can be removed and, provided the
waves stay plane, which they will then
not do, but will very nearly do at a great
distance from a radio transmitter, the
same applies. We have already noted
that the value of y/(u/ € ) for empty
space is 377Q. Within dielectric
materials p.is hardly affected, but € will
be greater, so the resistance of the
material to plane waves will be less than
377Q.
If we work back from Rg= / (u/ € ) by
using equations (14), (4) and (10) (with
I=w) and R,= V/I, we get

(14 again)

E
RS = —
H
which is analogous to
A%
R =
°T

The dimensions are right, because E is
in volts per metre and H is in amps per
metre, and the metres cancel out.



