Ethernet for Vehicles

Ethernet for Vehicles Advances article tells that Ethernet technology in the car (a concept that was once unthinkable for the automotive industry) has been gaining momentum lately. The irony of this sudden trend is that a few years ago, Ethernet wasn’t seen as a solution to any applications in the car (one exception for this rule is that BMW cars supporting Ethernet have been on the market since 2008).

There are many existing in-vehicle technologies such as CAN, LIN, LVDS and FlexRay. Just few years ago MOST (Media Oriented Systems Transport) was seen as the de-facto standard for multimedia and infotainment networking in the automotive industry, but is has has now fallen out of favor. So now it seem to be right time for Ethernet.

ds4

A coalition of automakers and automotive suppliers said recently that they are forming a special interest group (SIG) aimed at driving broad-scale adoption of Ethernet in vehicles, largely to serve the expected boom of camera-based applications in cars. NXP and Broadcom are playing a big role in the launch of the new special interest group, known as the OPEN (One-Pair-Ether-Net) SIG. This SIG is focused on the idea of creating a single physical layer that would enable easy use of Ethernet with vehicle cameras. OPEN Alliance is designed to encourage wide scale adoption of Ethernet-based, single pair unshielded cable networks as the standard in automotive applications.

NXP said it would be the first supplier to license Broadcom’s BroadR-Reach ethernet technology (technology originally designed to extends the range of twisted pair connections from 100 meters to up to 500 meters) for in-vehicle networking. Broadcom has also introduced their Automotive Ethernet Product Portfolio. BroadR-Reach allows full-duplex operation over a single twisted pair at 100 Mbps (same type of cabling 80-110 ohms unshielded or shielded twisted pair cabling as used in FlexRay works).

connectedcar_diagram1_black

Interest in one pair Ethernet technology has grown dramatically as the automotive industry accelerates its adoption of Ethernet based networks. BMW and Hyundai have teamed up with Broadcom, NXP Semiconductors, Freescale and Harman to make ethernet the computer networking technology of choice inside the car. Infotainment systems maker Harman said that higher-bandwidth connectivity will address customers’ growing demand for seamlessly integrated information, entertainment and safety features in the car.

I have been for long time wondering why the automotive makers have been very hesitant to spec Ethernet in the past since it’s such a well-proven technology? Ethernet has gained momentum in many sectors, because it’s a fast, mature technology with high production volumes in the computer industry. Now it is the time for the auto industry is to leverage the computer industry’s enormous Ethernet know-how.

53 Comments

  1. Tomi Engdahl says:

    What’s the Difference Between BroadR-Reach and 100Base-T1?
    http://www.electronicdesign.com/automotive/what-s-difference-between-broadr-reach-and-100base-t1?NL=ED-004&Issue=ED-004_20180612_ED-004_318&sfvc4enews=42&cl=article_1_b&utm_rid=CPG05000002750211&utm_campaign=17875&utm_medium=email&elq2=8b7cbefad612415d932a00126b7bcbbf

    These two near-identical automotive serial-data specs do, in fact, have distinctions.

    How 100Base-T1 Differs from BroadR-Reach

    The -T1 variant is interoperable with OPEN Alliance BroadR-Reach. They’re very nearly identical (the names are often used interchangeably), with two small exceptions. In the physical-layer electrical (physical medium attachment or PMA) test suite, the 100Base-T1 specification defines a test for the maximum Transmit Peak Differential Output. This parameter isn’t explicitly defined in the BroadR-Reach specification.

    The second exception is that the 100Base-T1 specification has some differences in the protocol timing for wakeup commands to make those periods shorter. Those are the only differences worth noting, though.

    Why, then, one wonders, did the IEEE 802.3bw specification come about? The driver was applications for Automotive Ethernet in other application domains, such as industrial automation and avionics. The benefits of BroadR-Reach were enticing enough for the IEEE to create its own version of the specification. As a result, the two Automotive Ethernet specifications share a common environment and ecosystem.

    Reply
  2. Tomi Engdahl says:

    Enabling Ethernet Time-Sensitive Networking With Automotive-Certified IP
    https://semiengineering.com/enabling-ethernet-time-sensitive-networking-with-automotive-certified-ip/

    Behind the standard that enables predictable latency and guaranteed bandwidth for automotive networks.

    Automotive systems are becoming more sophisticated as they combine ADAS applications from emergency braking, collision avoidance, lane departure warning to fully autonomous driving, making predictable latency and guaranteed bandwidth in the automotive network critical. These applications require a high volume of data from different parts of the car for processing and decision making. Due to the high volume of data, enabling high-performance network connectivity has become a challenge that automotive SoC designers are overcoming with Ethernet. In addition to the high-performance requirements, Ethernet with Time Sensitive Networking (TSN) gives engineers the tools they need to design automotive networks with predictable latency and guaranteed bandwidth.

    The IEEE TSN working groups have released numerous standards and continue to define new and adapt existing specifications to meet the evolving needs for Ethernet in active ADAS applications that require real time networking. An active ADAS application takes control of the car to react to a situation such as avoiding a collision with a pedestrian, object, or another car. This article describes the Ethernet TSN standards for automotive SoCs and briefly explains how designers can enable TSN with automotive-certified Ethernet IP.

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*