Evolution of Mobile Communication from 1(G) to 4G, 5G, 6G, 7G …

http://vitorr.com/post-details.php?postid=2615

The cellular wireless Generation (G) generally refers to a change in the nature of the system, speed, technology and frequency. Each generation have some standards, capacities, techniques and new features which differentiate it from the previous one.

Now 5G is hot technology at the top of the hype cycle. But that’s not the end of story, because when we will see that 5G does not fullfill all the promises, we start looking for to implement next version after it: 6G.

312 Comments

  1. Tomi Engdahl says:

    Telia valmistautuu kasvavaan määrään 6G-tukiasemia
    https://www.uusiteknologia.fi/2024/03/06/telia-valmistautuu-jo-kasvavaan-maaraan-6g-tukiasemia/

    Tietoliikenneyhtiö Telia yhtiöittää kiinteistöjen tukiasemakohteiden liiketoiminta omaan yhtiöönsä. Telia Rooftopiin. Uusi yhtiö on valmistautumista myös tulevaisuuden 6G-verkkojen entistä suurempaan määrään tukiasemapaikkoja erityisesti kaupunkien keskustoissa.

    ”Tukiasemabisnes on 5G:n korkeampien taajuuksien ja 6G:n myötä muuttumassa merkittävästi, kun kohteita tarvitaan jatkossa nykyistä enemmän”, avaa teknologiajohtaja Jari Collin yhtiöittämisen tavoitteita.

    Uuteen yhtiöön siirtyvät tukiasemakohteiden sopimusten hallinnointi sekä akustot ja muu passiivinen kalusto. Yhteissijoittamisen aktiivisella myynnillä saavutetaan skaalaetuja, kun useampi operaattori tuo omat aktiivilaitteensa samoihin kohteisiin.

    Reply
  2. Tomi Engdahl says:

    Tekoäly katkaisee kännykän datalinkin tukiasemaan, jos sitä ei tarvita
    https://etn.fi/index.php/13-news/15948-tekoaely-katkaisee-kaennykaen-datalinkin-tukiasemaan-jos-sitae-ei-tarvita

    Älypuhelimen akun kesto on tärkeä tekijä, joka vaikuttaa käyttäjäkokemukseen. Laitteiston puolelta pyritään lisäämään akun kapasiteettia ja vähentämään komponenttien, kuten näyttöjen virrankulutusta, ja samalla uusia yrityksiä kehitetään myös viestintätekniikoita, jotka pystyvät vähentämään virrankulutusta koskien tiedonsiirtoa ja vastaanottoa.

    Korealainen SK Telecom on yhdessä MediaTekin ja tekoäly-yritys Nota AI:n kehittänyt tekniikan, jonka avulla voidaan merkittävästi vähentää älypuhelimen virrankulutusta. Ratkaisu perustuu reaaliaikaiseen ennustamiseen, tarvitaanko datayhteyttä tukiasemaan vai ei.

    SKT kehitti yhdessä MediaTekin ja Nota AI:n kanssa laitteessa olevan tekoälypohjaisen teknologian, jonka avulla laite voi ennustaa reaaliajassa, tapahtuuko tiedonsiirto tietyn ajanjakson sisällä. Tämä ohjaa optimaalista yhteyden tilaa laitteen ja tukiaseman välillä.

    Jos ennuste osoittaa, että dataa todennäköisesti esiintyy, se jatkaa yhteyden ylläpitämistä laitteen ja tukiaseman välillä. Toisaalta, jos se katsoo, että dataa ei todennäköisesti esiinny, se katkaisee yhteyden tukiasemaan tarpeettoman virrankäytön estämiseksi.

    Reply
  3. Tomi Engdahl says:

    https://www.uusiteknologia.fi/2024/03/08/naiset-tiukemmin-mukaan-6g-tutkimukseen/

    Tänään YK:n julistamaa kansainvälistä naisten oikeuksien ja rauhan päivää vietettäessä on hyvä nostaa esiin, että moninaisuuden lisääminen ja naisten saaminen mukaan teknisille aloille on välttämättömyys. Yksi heistä on Oulun yliopiston 6G-tutkijana toimiva Mariella Särestöniemi.

    Reply
  4. Tomi Engdahl says:

    Using compact reflector chips, such as this prototype board developed by researchers at Cornell University, future #6G #wireless networks could provide tens of gigabits per second bandwidth.

    6G Reflector Chip Tech Offers Road to 33 Gbps High bandwidth means smart signal timing; spiral waveguides are here to help
    https://spectrum.ieee.org/6g-wireless-reflector-chips?share_id=8143663&socialux=facebook&utm_campaign=RebelMouse&utm_content=IEEE+Spectrum&utm_medium=social&utm_source=facebook&fbclid=IwAR031l3970VFuP2d1SqxOd_CcNwfsBb2ZU0f7vThEHHACaruoYZ_FjKX1lI

    Using 3-D stacks of reflectors on microchips could triple data rates of wireless links to help speed development of 6G communications, a new study finds.

    Most current wireless communications technology, such as 5G phones, operate at frequencies below 6 gigahertz. For greater data rates, researchers are striving to develop 6G communications that use frequencies above 20 GHz for data rates 100 times greater than 5G.

    However, at 6G‘s anticipated higher frequencies, transmissions also experience greater attenuation and losses from the environment. Thus, instead of depending on a single transmitter and a single receiver, most 5G and 6G technologies use arrays of antennas. These arrays have to precisely control any delay their signals may experience to make sure they arrive when they should and not in a jumble. However, the components involved in adding necessary delays to signals can also usher in problems of their own.

    The most common delay elements are phase shifters. Although these components can be less than 0.3 square millimeters large, they cannot equally delay all the frequencies across large bandwidths, says Bal Govind, a doctoral student in electrical and computer engineering at Cornell University in Ithaca, N.Y. Phase shifts, Govind says, can blur signals, greatly limiting the data rates of wireless networks.

    In contrast, true time delay elements can equally delay all the frequencies across large bandwidths, avoiding the blurring problem. However, such elements are also physically much bigger, typically 1 to 2 square millimeters in size, Govind says. This means only a few such circuit components can be integrated onto a chip, again limiting channel capacity.

    However, now Govind and his colleagues have developed a way to miniaturize true time delay elements. The new microwave component, only 0.16 square millimeters in size, is smaller than a phase shifter, but it can also act like a true time delay element across 14 gigahertz of bandwidth.

    The scientists achieved these gains using 3D spirals of reflectors.

    Reply
  5. Tomi Engdahl says:

    5G’s Evolution: TSN, RedCap and Non-Terrestrial Networks
    https://www.youtube.com/watch?v=4uBsghr_bfM

    This webinar will delve into three key topics:

    → TSN features enabled by 5G for lower latency
    → The RedCap in filling connectivity gaps
    → The benefits of NTN for seamless mobility

    We will discuss how 3GPP’s Release (16) enabled 5G to deliver crucial features for TSN (e.g., SIB9 time synchronization and Ethernet PDU support). These features are vital for Industry 4.0, ensuring precise and reliable communication and lower latency within complex industrial environments.

    With 3GPP Rel 17 and Rel 18, we will explore RedCap and eRedCap. These two device types provide solutions for use cases that don’t require high throughput or low latency. It bridges the connectivity gap for various applications by enabling cost-effective 5G NR solutions.

    In addition, we will discuss NTN, which addresses the unique mobility challenges between NTN and terrestrial networks (TN). This technology opens new possibilities for seamless connectivity in remote or challenging environments.

    Attendees will learn:

    → Features that 5G brings to TSN and how it supports Industry 4.0 requirements
    → How 5G revolutionizes networking capabilities for a wide range of industries
    → How RedCap and evolved RedCap capabilities meet the connectivity needs of diverse use cases
    → The potential of NTN and its impact on improving mobility between different network types

    Reply
  6. Tomi Engdahl says:

    NVIDIA Unveils 6G Research Cloud Platform to Advance Wireless Communications With AIhttps://nvidianews.nvidia.com/news/nvidia-unveils-6g-research-cloud-platform-to-advance-wireless-communications-with-ai

    Ansys, Keysight, Nokia, Samsung Among First to Use NVIDIA Aerial Omniverse Digital Twin, Aerial CUDA-Accelerated RAN and Sionna Neural Radio Framework to Help Realize the Future of Telecommunications

    GTC—NVIDIA today announced a 6G research platform that empowers researchers with a novel approach to develop the next phase of wireless technology.

    The NVIDIA 6G Research Cloud platform is open, flexible and interconnected, offering researchers a comprehensive suite to advance AI for radio access network (RAN) technology. The platform allows organizations to accelerate the development of 6G technologies that will connect trillions of devices with the cloud infrastructures, laying the foundation for a hyper-intelligent world supported by autonomous vehicles, smart spaces and a wide range of extended reality and immersive education experiences and collaborative robots.

    Ansys, Arm, ETH Zurich, Fujitsu, Keysight, Nokia, Northeastern University, Rohde & Schwarz, Samsung, SoftBank Corp. and Viavi are among its first adopters and ecosystem partners.

    “The massive increase in connected devices and host of new applications in 6G will require a vast leap in wireless spectral efficiency in radio communications,” said Ronnie Vasishta, senior vice president of telecom at NVIDIA. “Key to achieving this will be the use of AI, a software-defined, full-RAN reference stack and next-generation digital twin technology.”

    The NVIDIA 6G Research Cloud platform consists of three foundational elements:

    NVIDIA Aerial Omniverse Digital Twin for 6G: A reference application and developer sample that enables physically accurate simulations of complete 6G systems, from a single tower to city scale. It incorporates software-defined RAN and user-equipment simulators, along with realistic terrain and object properties. Using the Omniverse Aerial Digital Twin, researchers will be able to simulate and build base-station algorithms based on site-specific data and to train models in real time to improve transmission efficiency.
    NVIDIA Aerial CUDA-Accelerated RAN: A software-defined, full-RAN stack that offers significant flexibility for researchers to customize, program and test 6G networks in real time.
    NVIDIA Sionna Neural Radio Framework: A framework that provides seamless integration with popular frameworks like PyTorch and TensorFlow, leveraging NVIDIA GPUs for generating and capturing data and training AI and machine learning models at scale. This also includes NVIDIA Sionna, the leading link-level research tool for AI/ML-based wireless simulations.

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*