Electronics trends for 2018

Here are some of my collection of newest trends and predictions for year 2018. I have not invented those ideas what will happen next year completely myself. I have gone through many articles that have given predictions for year 2018. Then I have picked and mixed here the best part from those articles (sources listed on the end of posting) with some of my own additions to make this posting.This article contains very many quotations from those source articles (hopefully all acknowledged with link to source).

The general trend in electronics industry is that the industry growth have been driven by mobile industry. Silicon content in smartphones and other mobile devices is increasing as vendors add greater functionality. Layering on top of that are several emerging trends such as IoT, big data, AI and smart vehicles that are creating demand for greater computing power and expanding storage capacity.

 

Manufacturing trends

According to Foundry Challenges in 2018 article the silicon foundry business is expected to see steady growth in 2018. The growth in semiconductor manufacturing will remain steady, but there will be challenges in the manufacturing capacity and  expenses to move to the next nodes. For most applications, unless you must have highest levels of performance, there may not be as compelling a business case to focus on the bleeding-edge nodes. Over the last two years, the IC industry has experienced an acute shortage of 200mm fab capacity (legacy MCU, power, sensors, 6-micron to 65nm). In 2018, 200mm capacity will remain tight. An explosion in 200mm demand has set off a frenzied search for used semiconductor manufacturing equipment that can be used at older process nodes. The problem is there is not enough used equipment available. The profit margins in manufacturing are so thin in markets served by those fabs that it’s hard to justify paying current rising equipment prices, and newcomers may have a tough time making inroads. Foundries with fully depreciated 200mm equipment and capacity already are seeing increased revenues in their 200mm business.The specialty foundry business is undergoing a renaissance, thanks to the emergence of 5G and automotive.

300mm is expected to follow a similar path for lack of capacity because 300mm fabs already produce leading-edge chips and more mainstream 300mm demand is driven by MCUs, wireless communications and storage applications. Early predictions are for solid growth in 2018, fueled by demand for memory and logic at advanced 10/7nm

In 2017, marking the first time that the semiconductor equipment market has exceeded the previous market high of US$47.7 billion set in 2000. Fab tool vendors found themselves in the midst of an unexpected boom cycle in 2017, thanks to enormous demand for equipment in 3D NAND and, to a lesser degree, DRAM. In 2018, equipment demand looks robust, although the industry will be hard-pressed to surpass the record growth figures in 2017. In 2018, 7.5 percent growth is expected to result in sales of US$60.1 billion for the global semiconductor equipment market – another record-breaking year. Demand looks solid across the three main growth drivers for fab tool vendors—DRAM, NAND and foundry/logic.
Rising demand for chips is hitting the IC packaging supply chain, causing shortages of select manufacturing capacity, various package types, leadframes and even some equipment. Spot shortages for some IC packages began showing up in 2017, but the problem has been growing and spreading since then, so  packaging customers may encounter select shortages well into 2018Apple Watch 3 shipment growth to benefit Taiwan IC packagers in 2018.

Market for advanced packaging begins to diverge based on performance and price. Advanced Packaging is now viewed as the best way to handle large amounts of data at blazing speeds.

Moore’s law

Many recent publications say Moore’s Law is dead. Though Moore’s Law is dead may be experiencing some health challenges, it’s not time to start digging the grave for the semiconductor and electronics market yet

Even smaller nodes are still being taken to use in high end chips. The node names are confusing. Intel’s 10nm technology is roughly equivalent to the foundry 7nm node.In 2018, Intel is expected to finally ramp up 10nm finally in the first half of 2018. In addition, GlobalFoundries, Samsung and TSMC will begin to ship their respective 7nm finFET processes. On the leading edge, GlobalFoundries, Intel, Samsung and TSMC start migrating from the 16nm/14nm to the 10nm/7nm logic nodes. It is expected that some chip-makers face some challenges on the road. Time will tell if GlobalFoundries, Samsung and TSMC will struggle at 7nm. Early predictions are for solid growth in 2018, fueled by demand for memory and logic at advanced 10/7nm. 7nm is projected to generate sales from $2.5 billion to $3.0 billion in 2018. Over time 10nm/7nm is expected to be a big and long-running node. Suppliers of FPGAs and processors are expected to jump on 10nm/7nm.

South Korea’s Samsung Electronics said it has commenced production of the second generation of its 10nm-class 8-Gb DDR4 DRAM. Devices labeled 10nm-class have feature sizes as small as 10 to 19 nanometers. With the continued need for shrinking pattern dimensions, semiconductor manufacturers continue to implement more complex patterning techniques, such as advanced multi-patterning, for the 10nm design node and beyond. They also are investing significant development effort in readying EUV lithography for production at the 7/5nm design nodesSamsung is planning to begin transitioning to EUV for logic chips next year at the 7nm node, although it is unclear when the technology will be put into production for DRAM.

There will be talk on even smaller nodes. FinFETs will get extended to at least to 5nm, and possibly 3nm in next 5 years. The path to 5nm loks pretty clear. FinFETs will get extended at least to 5nm. It’s possible they will get extended to 3nm. EUV will be used at new nodes, followed by High NA Lithography. New smaller nodes challenges the chip design as abstractions become more difficult at 7nm and beyond. Models are becoming more difficult to develop, integrate and utilize effectively at 10/7nm and beyond as design complexity, process variation and physical effects add to the number of variables that need to be taken into account. Materials and basic structures may diverge by supplier, at 7 nm and beyond. Engineering and scientific teams at 3nm and beyond will require completely different mixes of skills than today.

Silicon is still going strong, but the hard fact is that CMOS has been running out of steam for several nodes, and that becomes more obvious at each new node. To extend into new markets and new process nodes Chipmakers Look To New Materials. There are a number of compounds in use already (generally are being confined to specific niche applications), such as gallium arsenide, gallium nitride, and silicon carbide. Silicon will be supplemented by 2D materials to extend Moore’s Law. Transition metal dichalcogenides (TMDCs), a class of 2D materials derived from basic elements—principally tellurium, selenium, sulfur, and oxygen—are being widely explored by researchers. TMDCs are functioning as semiconductors in conjunction with graphene. Graphene, the wonder material rediscovered in 2004, and a host of other two-dimensional materials are gaining ground in manufacturing semiconductors as silicon’s usefulness begins to fade. Wide-bandgap semiconductor materials like gallium nitride (GaN) and silicon carbide (SiC) are anticipated to be used in many more applications in 2018. Future progress increasingly will require a mix of different materials and disciplines, but silicon will remain a key component.

Interconnect Materials need to to be improved. For decades, aluminum interconnects were the industry standard. In the late 1990s, chipmakers switched to copper. Over the years, transistors have decreased dramatically in size, so interconnects also have had to scale in size leading to roadblock known as the RC challenge. Industry is investing significant effort in developing new approaches to extend copper use and finding new metals. There’s also some investigation into improvements on the dielectric side. The era of all-silicon substrates and copper wires may be coming to an end.

Application markets

Wearables are a question mark. Demand for wearables slowed down in 2017 so much that smart speakers likely outsold wearable devices in 2017 holiday season.  eMarketer is estimating that usage of wearable will grow just 11.9 percent in 2018, rising from 44.7 million adult wearable users in 2017 to 50.1 million in 2018. On the other hand market research firm IDC estimates that the shipments of wearable electronics devices are projected to more than double over the next five years as watches displace fitness trackers as the biggest sellers. IDC forecasts that wearables shipments will increase at a compound annual growth rate of 18.4 percent between 2017 and 2021, rising from 113.2 million this year to 222.3 million in 2021. At the same time fitness trackers are expected to become commodity product. Tomorrow’s wearables will become more fully featured and multi-functional.

The automotive market for semiconductors is shifting into high gear in 2018. Right now the average car has about $350 worth of semiconductor content, but that is projected to grow another 50% by 2023 as the overall automotive market for semiconductors grows from $35 billion to $54 billion. The explosion of drive-by-wire technology, combined with government mandates toward fully electric powertrains, has changed this paradigm—and it impacts more than just the automotive industry. Consider implications beyond the increasingly complex vehicle itself, including new demands on supporting infrastructure. The average car today contains up to 100 million lines of code. Self-driving car will have considerably more code in it. Software controls everything from safety critical systems like brakes and power steering, to basic vehicle controls like doors and windows. Meeting ISO 26262 Software Standards is needed but it will not make the code bug free. It’s quickly becoming common practice for embedded system developers to isolate both safety and security features on the same SoC. The shift to autonomous vehicles marks a major shift in the supply chain—and a major opportunity.

Many applications have need for a long service life — for example those deployed within industrial, scientific and military industries. In these applications, the service life may exceed that of component availability. Replacing an advanced, obsolete components in a design can be very costly, potentially requiring an entire redesign of the electronic hardware and software. The use of programmable devices helps designers not only to address component obsolescence, but also to reduce the cost and complexity of the solution. Programmable logic devices are provided in a range of devices of different types, capabilities and sizes, from FPGAs to System on Chips (SoC) and Complex Programmable Logic Devices (CPLD). The obsolete function can be emulated within the device, whether it is a logic function implemented in programmable logic in a CPLD, FPGA or SoC, or a processor system implemented in an FPGA or SoC.

Become familiar with USB type C connector. USB type C connector is becoming quickly more commonplace than any other earlier interface. In the end of 2016 there were 300 million devices using a USBC connection – a big part was smartphones, but the interface was also widespread on laptops. With growth, the USBC becomes soon the most common PC and peripheral interface. Thunderbolt™ 3 on USBC connector promises to fulfill the promise of USB-C for single-cable docking and so much more.

 

Power electronics

The power electronics market continues to grow and gain more presence across a variety of markets2017 was a good year for electric vehicles and the future of this market looks very promising. In 2017, we saw also how wireless charging technology has been adopted by many consumer electronic devices- including Apple smart phones. Today’s power supplies do more than deliver clean and stable dc power on daily basis—they provide advanced capabilities that can save you time and money.

Wide-bandgap semiconductor materials like gallium nitride (GaN) and silicon carbide (SiC) are anticipated to be used in many more applications in 2018. At the moment, the number of applications for those materials is steadily increasing in the automotive and military industry. Expect to see more adoption of SiC and GaN materials in automotive market.

According to Battery Market Goes Bigger and Better in 2018 article advances in battery technologies hold the keys to continuing progress in portable electronics, robotics, military, and telecommunication applications, as well as distributed power grids. It is difficult to see lithium-ion based batteries being replaced anytime soon, so the advances in battery technology are primarily through the application of lithium-ion battery chemistries. New battery protection for portable electronics cuts manufacturing steps and costs for Lithium-ion.

Transparency Market Research analysts predict that the global lithium-ion battery market is poised to rise from $29.67 billion in 2015 to $77.42 billion in 2024 with a compound annual growth rate of 11.6 %. That growth has already spread from the now ubiquitous consumer electronics segment to automotive, grid energy, and industrial applications. Dramatic increase is expected for battery power for the transportation, consumer electronic, and stationary segments. According to Bloomberg New Energy Finance (BNEF), the global energy-storage market will double six times between 2016 and 2030, rising to a total of 125 G/305 gigawatt-hours. In 2018, energy-storage systems will continue proliferating to provide backup power to the electric grid.

Memory

Memory business boomed in 2017 for both NAND and DRAM. The drivers for DRAM are smartphones and servers. Solid-state drives (SSDs) and smartphones are fueling the demand for NAND.  Both the DRAM and NAND content in smartphones continues to grow, so memory business will do well in 2018.Fab tool vendors found themselves in the midst of an unexpected boom cycle in 2017, thanks to enormous demand for equipment in 3D NAND and, to a lesser degree, DRAMIn 2018, equipment demand looks robust, although the industry will be hard-pressed to surpass the record growth figures in 2017.

NAND Market Expected to Cool in Q1 from the crazy year 2017, but it is still growing well because there is increasing demand. The average NAND content in smartphones has been growing by roughly 50% recently, going from approximately 24 gigabytes in 2016 to approximately 38 gigabytes today.3D NAND will do the heavy memory lifting that smartphone users demand. Contract prices for NAND flash memory chips are expected to decline in during the first quarter of 2018 as a traditional lull in demand following the year-end quarter.

Lots of 3D NAND will go to solid state drives in 2018. IDC forecasts strong growth for the solid-state drive (SSD) industry as it transitions to 3D NAND.  SSD industry revenue is expected to reach $33.6 billion in 2021, growing at a CAGR of 14.8%. Sizes of memory chips increase as number of  layer in 3D NAND are added. We’ve already scaled up to 48 layers. Does this just keep scaling up, or are there physical limits here? Maybe we could see a path to 256 layers in few years.

Memory — particular DRAM — was largely considered a commodity business. Though that it’s really not true in 2017. DRAM memory marked had boomed in 2017 at the highest rate of expansion in 23 years, according to IC Insights. Skyrocketing prices drove the DRAM market to generate a record $72 billion in revenue, and it drove total revenue for the IC market up 22%. Though the outlook for the immediate future appears strong, a downturn in DRAM more than likely looms in the not-too-distant future. It will be seen when there are new players on the market. It is a largely unchallenged assertion that Chinese firms will in the not so distant future become a force in semiconductor memory market. Chinese government is committed to pumping more than $160 billion into the industry over a decade, with much of that ticketed for memory startups.

There is search for faster memory because modern computers, especially data-center servers that skew heavily toward in-memory databases, data-intensive analytics, and increasingly toward machine-learning and deep-neural-network training functions, depend on large amounts of high-speed, high capacity memory to keep the wheels turning. The memory speed has not increased as fast as the capacity. The access bandwidth of DRAM-based computer memory has improved by a factor of 20x over the past two decades. Capacity increased 128x during the same period. For year 2018 DRAM remains a near-universal choice when performance is the priority. There has been some attempts to very fast memory interfaces. Intel the company has introduced the market’s first FPGA chip with integrated high-speed EMBED (Embedded Multi-Die Interconnect Bridge): The Stratix 10 MX interfaces to HMB2 memory (High Memory Bandwidth) that offers about 10 times faster speed than standard DDR-type DIMM.

There is search going on for a viable replacement for DRAM. Whether it’s STT-RAM or phase-change memory or resistive RAM, none of them can match the speed or endurance of DRAM. Necessity is the mother of invention, and we see at least two more generations after 1x. XPoint is also coming up as another viable memory solution that could be inserted into the current memory architecture. It will be interesting to see how that plays out versus DRAM.

5G and IoT

5G something in it for everyone. 5G is big.  5G New Radio (NR) wireless technology will ultimately impact everyone in the electronics and telecommunications industries. Most estimates say 2020 is when we will ultimately see some real 5G deployments on a scale. In the meantime, companies are firming up their plans for whatever 5G products and services they will offer. Though test and measurement solutions will be key in the commercialization cycle. 5G is set to disrupt test processes. If 5G takes off, the technology will propel the development of new chips in both the infrastructure and the handset. Data centers require specialty semiconductors from power management to high-speed optical fiber front-ends. 5G systems will drive more complexity in RF front-ends .5G will offer increased capacity and decreased latency for some critical applications such as vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications for advanced driver assistance systems (ADAS) and self-driving vehicles. The big question is whether 5G will disrupt the landscape or fall short of its promises.

Electronics manufacturers expect a lot from Internet of Thing. The evolution of intelligent electronic sensors is creating a revolution for IoT and Industrial IoT as companies bring new sensor-based, intelligent systems to market. The business promise is that the proliferation of smart and connected “things” in the Industrial Internet of Things (IIoT) provides tremendous opportunities for increased performance and lower costs. Industrial Internet of Things (IIoT) has a market forecast approaching $100 billion by 2020. Turning volumes of factory data into actionable information that has value is essential. Predictive maintenance and asset tracking are two big IoT markets to watch in 2018 because they will provide real efficiencies and improved safety. It will be about instrumenting our existing infrastructures with sensors that improve their reliability and help predict failures. It will be about tracking important assets through their lifecycles.

A new breed of designers has arrived that is leveraging inexpensive sensors to build the intelligent systems at the edge of the Internet of Things (IoT). They work in small teams, collaborate online, and they expect affordable design tools that are easy to use in order to quickly produce results. Their goal is to deliver a functioning device or a proof-of-concept to their stakeholders while spending as little money as possible to get there. We need to become multi-functional engineers who can comfortably work in the digital, RF, and system domains.

The Io edge sensor  device usually needs to be cheap. Simple mathematical reasoning suggests that the average production cost per node must be small, otherwise the economics of the IoT simply are not viable. Most suppliers to the electronics industry are today working under the assumption that the bill-of-materials (BoM) cost of a node cannot exceed $5 on average. While the sensor market continues to garner billions of dollars, the average selling price of a MEMS sensor, for example, is only 60 cents.

Designing a well working and secure IoT system is still hard. IoT platforms are very complex distributed systems and managing these distributed systems is often an overlooked challenge. When designing for the IoT, security needs to be addressed from the Cloud down to each and every edge device. Protecting data is both a hardware and a software requirement, as more data is being stored and analyzed in edge devices and gateways.

The continued evolution of powerful embedded processors is enabling more functionality to be consolidated into single heterogeneous multicore devices. You will see more mixed criticality designs – those designs which contain both safety-critical and non-safety critical processes running on the same chip. It’s quickly becoming common practice for embedded system developers to isolate both safety and security features on the same SoC.

AI

There is clearly a lot of hype surrounding machine learning (ML) and artificial intelligence (AI) fields. Over the past few years, machine learning (ML) has evolved from an interesting new approach that allows computers to beat champions at chess and Go, into one that is touted as a panacea for almost everything. Machine learning already has delivered beneficial results in certain niches, but it has potential for a bigger and longer lasting impact because of the demand for broad insights and efficiencies across industries. Also EDA companies have been investing in this technology and some results are expected to be announced.

The Battle of AI Processors Begins in 2018. Machine learning applications have a voracious appetite for compute cycles, consuming as much compute power as they can possibly scrounge up. As a result, they are invariably run on parallel hardware – often parallel heterogeneous hardware—which creates development challenges of its own. 2018 will be the start of what could be a longstanding battle between chipmakers to determine who creates the hardware that artificial intelligence lives on. Main contenders on the field at the moment are CPUs, GPUs, TPUs (tensor processing units), and FPGAs. Analysts at both Research and Markets and TechNavio have predicted the global AI chip market to grow at a compound annual growth rate of about 54% between 2017 and 2021.

 

Sources:

Battery Market Goes Bigger and Better in 2018

Foundry Challenges in 2018

Smart speakers to outsell wearables during U.S. holidays, as demand for wearables slows

Wearables Shipments Expected to Double by 2021

The Week In Review: Manufacturing #186

Making 5G Happen

Five technology trends for 2018

NI Trend Watch 2018 explores trends driving the future faster

Creating Software Separation for Mixed Criticality Systems

Isolating Safety and Security Features on the Xilinx UltraScale+ MPSoC

Meeting ISO 26262 Software Standards

DRAM Growth Projected to be Highest Since ’94

NAND Market Expected to Cool in Q1

Memory Market Forecast 2018 … with Jim Handy

Pushing DRAM’s Limits

3D NAND Storage Fuels New Age of Smartphone Apps

$55.9 Billion Semiconductor Equipment Forecast – New Record with Korea at Top

Advanced Packaging Is Suddenly Very Cool

Fan-Outs vs. TSVs

Shortages Hit Packaging Biz

Apple Watch 3 shipment growth to benefit Taiwan IC packagers in 2018

Rapid SoC Proof-of-Concept for Zero Cost

EDA Challenges Machine Learning

What Can You Expect from the New Generation of Power Supplies?

Optimizing Machine Learning Applications for Parallel Hardware

FPGA-dataa 10 kertaa nopeammin

The 200mm Equipment Scramble

Chipmakers Look To New Materials

The Trouble With Models

What the Experts Think: Delivering the next 5 years of semiconductor technology

Programmable Logic Holds the Key to Addressing Device Obsolescence

The Battle of AI Processors Begins in 2018

For China’s Memory Firms, Legal Tests May Loom

Predictions for the New Year in Analog & Power Electronics

Lithium-ion Overcomes Limitations

Will Fab Tool Boom Cycle Last?

The Next 5 Years Of Chip Technology

Chipmakers Look To New Materials

Silicon’s Long Game

Process Window Discovery And Control

Toward Self-Driving Cars

Sensors are Fundamental to New Intelligent Systems

Industrial IoT (IIoT) – Where is Silicon Valley

Internet of things (IoT) design considerations for embedded connected devices

How efficient memory solutions can help designers of IoT nodes meet tight BoM cost targets

What You Need to Become a Multi-Functional Engineer

IoT Markets to Watch in 2018

USBC yleistyy nopeasti

62 Comments

  1. Tomi Engdahl says:

    Gartner Says Worldwide Semiconductor Revenue Forecast to Grow 7.5 Percent in 2018
    https://www.gartner.com/newsroom/id/3845163

    Worldwide semiconductor revenue is forecast to total $451 billion in 2018, an increase of 7.5 percent from $419 billion in 2017, according to Gartner, Inc. This represents a near doubling of Gartner’s previous estimate of 4 percent growth for 2018.

    “Favorable market conditions for memory sectors that gained momentum in the second half of 2016 prevailed through 2017 and look set to continue in 2018, providing a significant boost to semiconductor revenue,” said Ben Lee, principal research analyst at Gartner. “Gartner has increased the outlook for 2018 by $23.6 billion compared with the previous forecast, of which the memory market accounts for $19.5 billion. Price increases for both DRAM and NAND flash memory are raising the outlook for the overall semiconductor market.”

    However, these price increases will put pressure on margins for system vendors of key semiconductor demand drivers, including smartphones, PCs and servers. Gartner predicts that component shortages, a rising bill of materials (BOM) and the resulting prospect of having to raise average selling prices (ASPs) will create a volatile market through 2018.

    Despite the upward revision for 2018, the quarterly growth profile for 2018 is expected to fall back to a more normal pattern with a mid-single-digit sequential decline in the first quarter of the year, followed by a recovery and buildup in both the second and third quarters of 2018, and a slight decline in the fourth quarter.

    Analog Seen as Fastest-Growing Chip Segment
    https://www.eetimes.com/document.asp?doc_id=1332848

    The analog chip segment, buoyed by expansion in power management and automotive, is expected to be the fastest growing segment of the broader semiconductor market over the next five years, according to market research firm IC Insights.

    Sales of analog chips — including both general purpose and application-specific devices — are forecast to increase at a compound annual growth rate (CAGR) of 6.6 percent from 2017 to 2022, rising to $74.8 billion from $54.5 billion, according to the 2018 edition of IC Insights’ annual McClean Report.

    The broader IC market is projected to grow at a 5.1 percent CAGR over the same period, according to the report.

    IC Insights is projecting that IC sales will grow by some 8 percent this year after growing by 22 percent in 2017. The firm expects total chip sales to reach $393.9 billion in 2018, growing to $466.8 billion in 2022.

    Reply
  2. Tomi Engdahl says:

    EDA, IP Sales Up 8%
    All geographies show growth, including Japan; hiring increases across the industry.
    https://semiengineering.com/eda-ip-sales-up-8/

    The EDA sector continues to exhibit solid growth, increasing 8% to $2.2262 billion in Q3, up from $2.0937 billion in the same period in 2016, according to the most recent stats from the ESD Alliance Market Statistics Service. The four-quarter moving average was up 11.5%, year over year.

    While all of the numbers were up, two areas showed extraordinary growth. One involved Japan, which showed a 9.7 increase in Q3 2017, compared with the same period 8in 2016. CAE grew 15.2% in that period, while PCB/MCM was up 16.2% and IP was up 6%. Only IC physical design and verification and services revenue showed a decrease in that country.

    Reply
  3. Tomi Engdahl says:

    January 12, 2018
    Analog IC Market Forecast With Strongest Annual Growth Through 2022
    http://www.icinsights.com/news/bulletins/Analog-IC-Market-Forecast-With-Strongest-Annual-Growth-Through-2022/

    Power management, signal conversion, and automotive-specific analog markets drive expansion.

    Reply
  4. Tomi Engdahl says:

    Warp Speed Ahead
    What can you do with orders of magnitude performance improvements?
    https://semiengineering.com/warp-speed-ahead/

    The computing world is on a tear, but not just in one direction. While battery-powered applications are focused on extending the time between charges or battery replacements, there is a whole separate and growing market for massive improvements in speed.

    Ultimately, this is where quantum computing will play a role, probably sometime in the late 2020/early 2030 timeframe, according to multiple industry estimates. Still, although there has been some progress in room-temperature quantum computing, the bulk of that computing initially will be done in extreme cold inside of data centers.

    Between these two extremes, there is a growing focus on new architectures, packaging, materials and ever-increasing density to deal with massive amounts of data.

    “If you look at anything around big data, all of these systems will become smarter and smarter,” noted Synopsys chairman and co-CEO Aart de Geus. “Over time the desire is not to get 2X performance, but 100X. The only way to get there is not by using faster chips, but by using chips that can only do a single task. In other words, algorithm-specific. By simplifying the problem, you can make things much more efficient.”

    And this is where computing is about to take a big leap. In the past, the focus was on how to get more speed out of general-purpose processors, whether those were CPUs, GPUs or MCUs. Increasingly, processors are being designed for specific tasks.

    This puts new pressure on big chipmakers. Instead of spending years developing the next rev of a general processor, the future increasingly is about flexibility, choice, and an increasing level of customization. This is why Intel bought Altera, and it helps explains why all processor makers have been ramping up the number of chips they offer.

    companies begin architecting their own chips, which is already happening. Apple, Amazon, Google, Microsoft, Facebook and Samsung today are creating chips for specific applications. It’s also why there is so much attention being focused on programmability and parallelism, whether that involves embedded FPGAs, DSPs, or hybrid chips that add some level of programmability into ASICs.

    Reply
  5. Tomi Engdahl says:

    The first freely programmable mixed signal circuit

    CMIC is a product group of configurable mixed signal ICs developed by Silego, which can be used to perform a wide range of analogue functions in the devices. Under the name of Dialog Semiconductor, which has been purchased by Silego, the first CMIC circuits are now available, which can be programmed into the device after installation.

    This in-system programming will further facilitate the use of CMIC circuits in the devices. The circuit board on the devices can be used to install an empty GreenPAK circuit and its functionality can be accomplished by feeding the bit stream to the non-volatile memory of the circuit through the I2C bus.

    According to the Dialogue, the first circuits that support this programmability are SLG48626 and SLG46824. The circuits are 2×3-millimeters in 20-pin STQFN enclosure packed components.

    Silego said last autumn that it had delivered three billion circuits. The border of two billion circuits has been reported in August 2016. In December, the new owner, Dialog Semiconductor, said that its circuits will handle the Huawei Mate 10 flagship phone quick charge power conversion.

    Source: http://etn.fi/index.php?option=com_content&view=article&id=7408&via=n&datum=2018-01-17_14:58:41&mottagare=31202

    Reply
  6. Tomi Engdahl says:

    Artificial Intelligence powers mobile phones fast

    Last year, the first smartphones were introduced to the market, utilizing artificial intelligence. Gartner predicts that technology will become more rapid. In 2022, 80 percent of the new smartphones incorporate some kind of artificial intelligence integrated into the device.

    For manufacturers, artificial intelligence becomes a key way to distinguish themselves from other manufacturers’ devices. For this development, Apple’s latest iPhone X is a good example. With artificial intelligence, the focus of equipment sales is shifting from sales of technology to selling personalized user experience, and this artificial intelligence works as an excellent tool.

    Last year artificial intelligence was found on every tenth new smartphone. These were the top models of the manufacturers. The most artificial intelligence is used to optimize power consumption, although for example, Huawe uses it to identify imaging objects.

    At the tip, the research institute raises the ability of the phone to know its users and their behaviors. The second most important feature will be to identify a user such as Face ID on Apple’s iPhone X.

    Source: http://etn.fi/index.php?option=com_content&view=article&id=7411&via=n&datum=2018-01-17_14:58:41&mottagare=31202

    Reply
  7. Tomi Engdahl says:

    Celebrating the 70th Anniversary of the Transistor
    We take a look back at a device that overwhelmingly changed the electronics industry and our lives.
    http://www.powerelectronics.com/community/celebrating-70th-anniversary-transistor?NL=ED-003&Issue=ED-003_20180117_ED-003_419&sfvc4enews=42&cl=article_2_b&utm_rid=CPG05000002750211&utm_campaign=14949&utm_medium=email&elq2=4fa32dfab00e4c73a505d5d110c6a37d

    As of Dec. 23, 2017, the transistor was officially 70 years old. The invention of the transistor may have been the greatest technology development of the 20th century. It has given us the integrated circuit and its progeny computers, TVs, smartphones, and all the other electronic stuff we use every day. We probably all owe our jobs to the invention of the transistor. So let’s take a moment to think about and celebrate this one monumental discovery.

    The various historical records say that the transistor was invented Dec. 23, 1947 at AT&T’s Bell Laboratories by scientists William Shockley, John Bardeen, and Walter Brattain. On that day, they demonstrated transistor amplification with a point contact transistor.

    Reply
  8. Tomi Engdahl says:

    IR-Triggered MEMS Switch Requires Zero Power When Dormant
    http://www.electronicdesign.com/power/ir-triggered-mems-switch-requires-zero-power-when-dormant?NL=ED-003&Issue=ED-003_20180117_ED-003_419&sfvc4enews=42&cl=article_1_b&utm_rid=CPG05000002750211&utm_campaign=14949&utm_medium=email&elq2=4fa32dfab00e4c73a505d5d110c6a37d

    This MEMS-based on/off switch is triggered by impinging IR photons, and remains in a zero-power quiescent state until that event takes place.

    Even the minute amount of current needed in slow, infrequently activated Internet of Things (IoT) and other sensing applications can aggregate to an unacceptable energy drain and associated battery depletion, or result in energy-harvesting challenges. To address this issue, a team at Northeastern University has developed a MEMS-based switch that consumes zero power when it’s in dormant standby mode, but will “wake up” when triggered and subsequently turn on the rest of the circuitry.

    The event-driven switch is activated by impinging infrared (IR) light, and transforms the tiny amount of photonic energy within defined spectral bands to activate a MEMS mechanism. This IR energy could be from a source such as a flame or explosion; when the activating IR energy is removed, the switch turns itself off.

    The physics of transforming the IR absorption is based on plasmons, which are the waves of electrons that move along the surface of a metal after it’s been struck by photons

    Dubbed plasmonically enhanced micromechanical photoswitches (PMPs), the devices are based on nanoscale gold patches.

    The switches take energy from the IR electromagnetic radiation at specific, targeted wavelengths, and use it to mechanically close the contacts of the switches, thus creating a low-resistance electrical path without a need for any other power source. The activation mechanism is electromagnetic-to-thermal energy conversion.

    Reply
  9. Tomi Engdahl says:

    The world’s fastest DRAM – 2.4 gigabytes per pin

    In supercomputers and artificial intelligence applications, faster memory is required. Samsung responds by offering a new Aquabolt memory that utilizes the new HMB2 available volumes.

    According to Samsung, 8 GB HBM2 (High Bandwidth Memory-2) memory is the fastest data transfer on the market. With one pin, the memory transfers data to 2.4 gigabytes per second, even though the circuit operates at a low voltage of 1.2 volts.

    The 8 GB circuit transfers data altogether 307 gigabytes per second. This is 9.6 times faster than the 8 gigabit GDDR5 chip with a bandwidth of 32 gigabytes per second.

    If the hardware installs four new HMB2 memory, it already has a 1.2-terabyte bandwidth in memory. Compared to the first knee’s HMB2 memory, performance is up 50 percent, Samsung praises.

    Source: http://etn.fi/index.php?option=com_content&view=article&id=7404&via=n&datum=2018-01-16_15:55:57&mottagare=31202

    Reply
  10. Tomi Engdahl says:

    GE May Break Apart, Here’s Why
    https://www.mddionline.com/ge-may-break-apart-heres-why?ADTRK=UBM&elq_mid=2909&elq_cid=876648

    General Electric is considering breakup options after taking a major tax hit related to an old portfolio of long-term care insurance.

    Reply
  11. Tomi Engdahl says:

    A Signal Integrity Problem? Maybe Not
    https://www.designnews.com/electronics-test/signal-integrity-problem-maybe-not/166028228158102?ADTRK=UBM&elq_mid=2908&elq_cid=876648

    Too often electronic design engineers don’t understand that signal integrity, power integrity, and EMI should be considered in whole, expert says.

    Electronic design engineers testing for signal integrity issues in their products may be looking for the wrong thing, experts will tell engineers at an upcoming keynote panel at DesignCon in Santa Clara, CA.

    In many cases, the real culprit may be power integrity or electromagnetic interference (EMI), but engineers are increasingly misinterpreting the problem in front of them. The misunderstanding can cause problems in all kinds of systems using high-speed electronics and sensors. “We have to consider signal integrity, power integrity, and electromagnetic interference, not independently, but as one thing,” Steve Sandler, managing director of Picotest, told Design News. “Too often, we’re not doing that.”

    The problem is exacerbated by the fact engineers on big projects often operate in exclusive provinces and don’t understand how such challenges can be interrelated. “We have signal integrity engineers, power integrity engineers, and EMI engineers,” Sandler said. “Each of them has their own sector, their own tools, and even their own jargon. That’s the biggest challenge – we’re not even able to talk to each other because we use different words.”

    To address the problem, Sandler says that engineers need training and the appropriate tools. Proper training encourages engineers to share knowledge and “cross-pollinate” – that is, understand the close relationships between the provinces of signal, power sources, and EMI. Tools are also vital because the equipment used by signal integrity engineers typically differ from those of power engineers.

    “A 100-MHz oscilloscope is probably not okay for the power supply guy,” Sandler told us. “That engineer probably needs a 4-GHz scope. And, yes, they do need to have the right probes and they need to know how to make measurements.”

    Reply
  12. Tomi Engdahl says:

    Linköping University has made a significant breakthrough that can make much of the development of better bioelectronic devices available today. The researchers succeeded in producing the electrochemical logic circuits, which worked in the water for a long time in complete stability.

    Based on the tests, the logic circuits developed from materials have been stable for a long time under the influence of both oxygen and water.

    Source: http://www.etn.fi/index.php/13-news/7391-ensimmaiset-vedessa-toimivat-logiikkapiirit

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*