5G trends 2020

Here are some 5G trends for year 2020:

It looked like 5G and wireless dominated the airways in 2019. It seems that year 2020 will be a real test for 5G if it will really take on or fails to full-fill the big expectations. It seems that 5G networks are available at some place here and there from many operators, but 5G end user devices are not yet widely available or desired. New year will bring more 5G base stations.

5G: How Much is Real vs. Marketing? Is 5G ready for prime time? Breaking down the marketing hype versus what’s really going on in the industry. Marketing claims 5G is pervasive. The question is when: 2020 or is it 2025?

First, let’s define 5G also known as 5G New Radio, or 5G NR:
There is sub-6-GHz 5G for the cellphone protocol that requires LTE: 5G NSA.
There is sub-6-GHz standalone 5G: 5G SA.
There is 20- to 60-GHz 5G: 5G mmWave.

It seems that 2020 will be the real test for 5G devices as the 5G device mass market has not yet really started. Samsung says it shipped 6.7M+ Galaxy 5G phones globally in 2019, accounting for 53.9% of the 5G phone market (Galaxy S10 5G and the Galaxy Note 10 Plus 5G). 2020 is expected to be an interesting year for 5G growth across the smartphone market. Increased 5G rollouts by carriers means that customers will presumably be more interested in actually buying 5G devices. One June 2019 forecast made by Canalys has global 5G smartphone shipments crossing 4G smartphone shipments in 2023.

5G will be integrated to some PCs. Dell debuts a new Latitude 9510 laptop with built-in 5G, to launch March 26.

Ericsson says they are now 5G networks leader according to Ericsson ylitti odotukset kirkkaasti: ”Olemme 5g-johtaja” article. Nokia has cut its outlook for this year and next because of the need to step up its investments in 5G but ‘We don’t have a 5G problem,’ says Nokia’s head of software.

5G will be a good growing market for test device manufacturers as engineers will once again need to sharpen their skill sets and adopt new design and testing techniques. A lot of 5G Component Characterization and Test will be needed.Delivering 5G Devices to Market Will Bank on OTA Testing.

Network side needs also testing equipment. One approach being adopted to gain ground in the race to 5G involves the rapid prototyping and testing of network architectures. There is need for programmable RF devices. Industry seems to want their own private networks.

5G components are available from many sources already. The typical RF component suppliers are all providing 5G solutions: Avago/Broadcom, Huawei, MediaTek, Murata/pSemi (previously known as Peregrine), Qualcomm, Qorvo, Samsung, and Skyworks.

Challenges: Even the sub-6-GHz versions have technical issues in that the 5G target “air time” latency is 1 to 4 ms. Typical RF component manufacturers appear to be providing components that focus only on the sub-6-GHz frequency bands. The geopolitical situation relative to 5G also adds confusion to the 5G timeline.

There are many technical issues must be considered in the utilization of mmWave: mmWave frequencies travel relatively small distances. the mmWave transmitters consume a considerable amount of transmit power, providing additional challenges for battery-operated devices.

Market size: Several 5G market analyzers place the current worldwide market at approximately $40B (USD) and growing by a 57% CAGR to over $1T (USD) by 2025. With the standards still evolving, what are the likely changes that will occur by 2025?

5G in automotive: The automobile industry is experiencing exponential growth of self-driving features, and this trend is expected to continue. 5G network connections are expected to have a major influence on the development of self-driving cars making them faster, smarter, and safer. Where is car technology going in 2020?

As 5G work has started for many installers and marketers, the the researchers are already thinking about the nest step Beyond 5G chips. They are already planning technologies that could enable high-speed wireless devices beyond the 5G standard.

1,505 Comments

  1. Tomi Engdahl says:

    Private Network 5G Security Risks & Vulnerabilities https://www.trendmicro.com/en_us/research/22/f/5g-security-risks-vulnerabilities.html
    n The move towards 5G is accelerating as enterprises seek greater security, flexibility, and reliability in 5G than earlier cellular, wireless, or wired connectivity.

    Reply
  2. Tomi Engdahl says:

    The 64-antenna prototype transceiver produced 1 milliwatt, enough to power some IoT applications.

    New Transceiver Receives Power and Data Simultaneously The beam-steering approach aims to make 5G relays and IoT devices battery-less
    https://spectrum.ieee.org/wireless-power-transfer?utm_campaign=RebelMouse&socialux=facebook&share_id=7111441&utm_medium=social&utm_content=IEEE+Spectrum&utm_source=facebook

    Now, with the advent of 5G and its ability to transmit at high frequencies in the millimeter wave band range, new opportunities and approaches are opening up for WPT. Researchers at the Tokyo Institute of Technology have developed a prototype 64-element millimeter-waveband phased-array transceiver that can send and receive data while simultaneously receiving power. The aim is to employ the transceiver initially as a 5G relay, and later to integrate into Internet of Things (IoT) devices. This would enable such devices to shed their batteries, plugs, and cables, says lead researcher Atsushi Shirane. The result would be devices that are smaller, more practical, and capable of speedier communications, with potentially reduced maintenance costs

    Reply
  3. Tomi Engdahl says:

    https://www.uusiteknologia.fi/2022/06/29/matalammat-5g-taajuudet-kesamokkilaisten-kayttoon/

    Telian ja DNA:n yhteisesti omistama yhteisverkko on rakentanut kesämökeistään tunnetulle Saimaan alueelle uuden 700 megahertsin 5G-verkon. Uusi matalamman taajuuden 5G-verkko toimii jo muassa Juvalla, Parikkalassa, Punkaharjulla, Puumalassa, ja Sulkavalla.

    Telian ja DNA:n 5G-yhteisverkon peitto kasvaa kesän aikana toteutettavan uuden taajuusalueen käyttöönoton myötä. Jo rakennetussa verkossa aktivoidaan matalammalla 700 megahertsin taajuudella rakennettu 5G, jonka kantama on kymmenen kilometrin luokkaa.

    Tyypillisesti taajamissa käytettävän 3,5 gigahertsin 5G-taajuuden peittoalue on noin 1,5 km, joten matalampi taajuus tuo tarjolle huomattavasti laajemman peittoalueen. Samalla verkon kuuluvuus rakennusten sisällä paranee yhteisverkon mukaan selvästi.

    Uusi 5G-verkko tuo helpotusta myös festareille ja muille kesätapahtumille. Uuden 700 megahertsin verkon kapasiteetti on moninkertainen 4G-verkkoon verrattuna

    Reply
  4. Tomi Engdahl says:

    Telecom Security Forum: National Authorities and Telecom Regulators Analyse Policy Implementation & Current Cyber Threats https://www.enisa.europa.eu/news/enisa-news/telecom-security-forum-national-authorities-and-telecom-regulators-analyse-policy-implementation-current-cyber-threats
    The Telecom Security Forum gathered national authorities and telecom regulators around a busy agenda covering the role of telecom sector in the Ukraine crisis, policy topics like the 5G toolbox and Open RAN, technical topics such as the Flubot mitigation and SS7 interconnection attacks, and future technologies like quantum satellites and post-quantum cryptography. More than 150 participants attended this year’s edition of the Forum. In addition to the Forum, ENISA also hosted the 37th meeting of the ECASEC Expert Group (European Competent Authorities for Secure Electronic Communications), as well as meetings of the NIS Cooperation group for core internet and digital services, and the 5G cybersecurity group, responsible for the EU 5G toolbox. On Friday, ENISA organizes a knowledge-building seminar for authorities on 5G security and telecom attacks.

    Reply
  5. Tomi Engdahl says:

    Yhteisverkko laajentaa 10 kilometrin päähän kantavalla 5G:llä
    https://etn.fi/index.php/13-news/13753-yhteisverkko-laajentaa-10-kilometrin-paeaehaen-kantavalla-5g-llae

    DNA:n ja Telian yhteisesti omistama Suomen Yhteisverkko Oy on rakentanut kattavaa 5G-verkkoa Saimaan alueelle. 5G-verkon peitto kasvaa kevään rakennustalkoiden lisäksi kesän aikana toteutettavan uuden taajuusalueen käyttöönoton myötä. Jo rakennetussa verkossa aktivoidaan matalammalla 700 MHz:n taajuudella rakennettu 5G, jonka kantama on kymmenen kilometrin luokkaa.

    Uusi nopeampi verkko toimii jo muun muassa Juvalla, Parikkalassa, Punkaharjulla, Puumalassa, ja Sulkavalla. Työn myötä myös alueen 4G-yhteydet ovat parantuneet. Uusi nopeampi verkko helpottaa kesän viettoa alueella tuoden varmemmat yhteydet festareille, mökeille ja kesämatkailuun.

    Taajamissa käytettävän 3,5 GHz:n 5G-taajuuden peittoalue on noin 1,5 km

    Reply
  6. Tomi Engdahl says:

    Läpimurto: Tampereella demottiin 5G-verkkoa ilman tukiasemia
    https://etn.fi/index.php/13-news/13756-laepimurto-tampereella-demottiin-5g-verkkoa-ilman-tukiasemia

    Tamperelainen Wirepas on kehittänyt 5G Mesh -tekniikkansa, joka on jopa standardoitu ETSIn toimesta DECT-2020 -nimellä. Nyt Wirepas on demonnut verkkoa ensimmäisen kerran yhdessä piirisarjoja valmistavan Nordic Semiconductorin kanssa. Demo toteutettiin Tampereella ETSIn TC DECT#94 -täysistunnon yhteydessä.

    DECT-2020:n avulla kuka tahansa voi ottaa käyttöön ja yhdistää laitteita lisenssivapaisiin yksityisiin 5G-verkkoihin ensimmäistä kertaa. Tämä tarjoaa valtavan mahdollisuuden yhdistää miljardeja laitteita helposti ja luotettavasti.

    Vaikka IoT-markkinat ja liitettävyysongelmat ovat olleet olemassa jo jonkin aikaa, standardisoitua ratkaisua ei ole ollut. Aiemmat ratkaisut eivät ole ratkaisseet ongelmia kustannustehokkaasti ja luotettavasti vaaditussa mittakaavassa. Tästä syystä yhdistettyjen laitteiden yleistyminen on viivästynyt.

    DECT-2020 NR on ensimmäinen standardi, joka on suunniteltu erityisesti IoT-yhteyksien ratkaisemiseen. DECT-2020 toimii kaikkialla vapaana olevalla 1,9 gigahertsin kaistalla ja se onkin ainoa IoT-tekniikka, jolla on käytössään sama taajuusalue kaikkialla.

    Reply
  7. Tomi Engdahl says:

    Telian teknologiajohtaja: Otimme ison 5G-riskin – se kannatti
    https://yhteiso.telia.fi/t5/5G-artikkelit-ja-uutiset/Telian-teknologiajohtaja-Otimme-ison-5G-riskin-se-kannatti/ba-p/240159

    Jari Collin tähyilee ulos Telian pääkonttorin kattokerroksesta: ”En koskaan aiemmin ole ollut valitsemassa teknologiaa, joka lähtötilanteessa oli muita vaihtoehtoja kalliimpi ja kilpailijoita jäljessä. Mutta tätä päätöstä ei ole tarvinnut katua kertaakaan, päinvastoin.”

    Suomalaisoperaattorit saivat kaksi vuotta sitten turvallisuusviranomaiselta viestin: turvallisuuden merkitys mobiiliverkoissa on kasvamassa.

    ”Suhtauduimme siihen vakavasti. Tiesimme, että markkinoilla oli tarjolla edullisempaa 5G-teknologiaa, joka oli lisäksi tuotekehittelyssään puoli vuotta kilpailijoitaan edellä. Siitä huolimatta päätimme turvautua Suomessa yksinomaan Nokian teknologiaan”, Collin kertoo.

    Ratkaisulla oli hintansa. Telian kilpailijat päätyivät erilaiseen arvioon ja saivat selvän etumatkan tärkeässä 5G-kisan käynnistyksessä.

    Reply
  8. Tomi Engdahl says:

    3GPP Release 17:
    To bring new system capabilities and expand 5G
    to new devices, applications, and deployment
    https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/download-our-5g-nr-rel-17-presentation.pdf

    Reply
  9. Tomi Engdahl says:

    Picocom’s & Radisys’s Open RAN Platform for 5G NR Small Cells
    June 30, 2022
    Execs from Picocom and Radisys discuss the companies’ recently validated Open RAN platform and its contribution to an interoperable Open RAN ecosystem.
    https://www.mwrf.com/techxchange/talks/video/21245618/picocoms-radisyss-open-ran-platform-for-5g-nr-small-cells?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220701019&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    The industry is making inexorable progress toward an open, interoperable ecosystem for 5G Open RAN, and among the latest examples of this progress is the work being done by Picocom and Radisys. The companies have recently validated an Open RAN platform based on Picocom’s PC802 small-cell SoC and Radisys’s Connect RAN 5G software. In this video, three of the companies’ executives discuss the need for collaborative efforts in building the Open RAN ecosystem:

    Reply
  10. Tomi Engdahl says:

    AMD’s 4G/5G Open RAN RUs Fuel Meta Connectivity’s Evenstar Program
    May 12, 2022
    The efficient, adaptable radio units are intended to expand global mobile network infrastructure and accelerate Open RAN adoption for metaverse-ready networks.
    https://www.mwrf.com/technologies/systems/article/21241666/microwaves-rf-amds-4g5g-open-ran-rus-fuel-meta-connectivitys-evenstar-program?code=UM2DE&utm_source=RF+MWRF+Digital+Edition&utm_medium=email&utm_campaign=CPS220624028&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  11. Tomi Engdahl says:

    Power Amp Delivers 0.3 W for 28-GHz 5G Bands
    July 7, 2022
    This medium-power RF MMIC PA handles 26.5- to 29.5-GHz operation in 5G New Radio bands n257 and n261.
    https://www.mwrf.com/technologies/components/article/21246028/electronic-design-power-amp-delivers-03-w-for-28ghz-5g-bands

    Reply
  12. Tomi Engdahl says:

    PCB Technology in Software-Defined Radio
    July 5, 2022
    SDR requires a complex web of circuity on PCBs that not only defines the device’s functionality, but also the performance of these microwave and RF systems. Various factors come into play when designing PCBs for SDRs that must maintain signal integrity.
    https://www.mwrf.com/technologies/systems/article/21245882/per-vices-corp-pcb-technology-in-softwaredefined-radio

    What is an SDR?

    An SDR includes what’s commonly termed a radio front-end (RFE) and digital backend. The RFE boards contain the functionality of the radio over a very wide tuning range and incorporate various analog components such as LNAs, mixers, filters, frequency synthesizers, gain/attenuation blocks, and other devices needed for receiving (Rx) and transmitting (Tx) functionality.

    The highest-performance SDRs contain 3 GHz of instantaneous bandwidth using multiple independent RFE channels and digital-to-analog and analog-to-digital converters (DACs and ADCs).

    The digital backend usually leads to/from the DAC/ADC to a field-programmable gate array (FPGA) that performs various digital-signal-processing (DSP) tasks. This includes modulation, demodulation, digital upconverting (DUC)/digital downconverting (DDC) using a CORDIC mixer, and various digital filtering techniques to optimize for spurs and harmonics. In addition, the FPGA packetizes IQ sample data into our Ethernet protocol stack to transfer data to and from the SDR and host system.

    Other boards are required to ensure tight timing and control, as well as power distribution. The basic layout of the five boards used in Per Vices’s Crimson TNG SDR

    Reply
  13. Tomi Engdahl says:

    https://etn.fi/index.php/13-news/12949-5g-tukiasema-kuuluu-10-kilometrin-paeaehaen

    DNA kertoo, että sen 5G-verkko kattaa nyt jo 64 prosenttia suomalaisista. Peitossa otettiin marraskuussa iso harppaus, kun operaattori otti 5G-tukiasemissaan käyttöön 700 megahertsin taajuusalueen. Alhaisilla taajuuksilla tukiasema yltää parhaimmillaan 10 kilometrin päähän.

    - Marraskuussa aktivoimme 700 MHz:n taajuusalueen 5G-käyttöön kaikissa päivitetyissä tukiasemissamme. Tämä nosti 5G-väestökattavuutta merkittävästi, eli toi DNA:n 5G-verkon tuhansien uusien suomalaisten koteihin samalla parantaen sisätilakuuluvuutta, DNA:n radioverkkojohtaja Jarkko Laari kertoo.

    Matalampi 700 MHz:n taajuusalue kantaa selvästi kauemmaksi kuin 3,5 GHz:n taajuus, joka oli pitkään ainoa 5G-verkoissa käytetty taajuusalue. Matalammalla taajuudella verkko yltää tulevaisuudessa jopa 10 kilometrin päähän tukiasemasta, joten sen avulla 5G-yhteydet voidaan tarjota myös harvaan asutuille seuduille. Taajuusalueen käyttöönoton myötä 5G-liittymäasiakas saattaakin havaita puhelimessaan 5G-ikonin maantieteellisesti aiempaa paljon laajemmilla alueilla ja kattavammin sisätiloissa.

    Reply
  14. Tomi Engdahl says:

    Sup /diy/. Got an opportunity to salvage a bit of gear most of us will never get a chance to play with much less get inside, a 4G/5G antenna integrated radio unit (Ericsson AIR 6488). The guys who were dragging it to the skip (literally by its cords) told me it copped a lightning bolt, while I found no evidence I can’t imagine they would have let me walk with it if it were salvageable. Figured I’d post some guts for anyone interested.
    http://boards.4channel.org/diy/thread/2437951/anon-exposes-his-junk

    Reply
  15. Tomi Engdahl says:

    R&S Focuses on 5G/6G Component Test at IMS2022
    June 18, 2022
    Rohde & Schwarz will showcase new EVM optimization techniques for 5G FR2, 6G D-Band component test, the latest OTA test chamber, and many additional new products.
    https://www.mwrf.com/technologies/test-measurement/article/21244617/microwaves-rf-rs-focuses-on-5g6g-component-test-at-ims2022?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220708038&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    In Booth 7056 at IMS2022, Rohde & Schwarz will demonstrate a broad range of new test solutions that cover the mmWave frequency range and meet the latest industry demands imposed by higher frequencies, wider bandwidths, and more complex modulation schemes. Demos will include new approaches to optimizing EVM performance, 6G D-band system and component characterization, and the latest CATR-based OTA test solution.

    One don’t-miss demo is the company’s latest solution for optimizing error vector magnitude (EVM) capabilities, based on the R&S SMW200A vector signal generator (VSG), which now covers up to 67 GHz, and the R&S FSW signal and spectrum analyzer. Accurately measuring EVM has become a key specification for both the device under test (DUT) and the test instrumentation, as it encapsulates many critical test parameters. A new front end for Rohde’s FSW brings extremely high EVM measurement accuracy for wideband modulated signals in the mmWave range. This makes the solution well suited for testing any high-end communication component or systems, including 5G NR FR2 or IEEE 802.11ay/ad chipsets, amplifiers, user equipment, and base stations.

    Reply
  16. Tomi Engdahl says:

    RF Filter Solutions Address X, Ku, and Ka Band Applications
    June 25, 2022
    Leveraging thin-film process technology, these SMT filters slash lead times compared with custom designs.
    https://www.mwrf.com/technologies/components/article/21245237/microwaves-rf-rf-filter-solutions-address-x-ku-and-ka-band-applications?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220708038&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  17. Tomi Engdahl says:

    Anritsu Demos New Features for its VectorStar VNA
    July 2, 2022
    Navneet Kataria, Product Marketing Mgr., gives us a close-up look at Anritsu’s 4-port, 70-kHz-to-220-GHz VectorStar VNA, focusing on differential probes for on-wafer device characterization and an upcoming spectrum-analysis application.
    https://www.mwrf.com/technologies/test-measurement/video/21245796/anritsu-demos-new-features-for-its-vectorstar-vna?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220708038&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  18. Tomi Engdahl says:

    Power Amp Delivers 0.3 W for 28-GHz 5G Bands
    July 7, 2022
    This medium-power RF MMIC PA handles 26.5- to 29.5-GHz operation in 5G New Radio bands n257 and n261.
    https://www.electronicdesign.com/power-management/whitepaper/21246025/electronic-design-power-amp-delivers-03-w-for-28ghz-5g-bands?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS220628022&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    As 5G design-ins increasingly become a reality, there’s also additional momentum for using its higher-frequency bands with their wider bandwidth and performance potential. To make this happen, it’s necessary to have the right RF components, including the transmit-side power amplifier (PA).

    To address this opportunity, CML Microcircuits introduced the CMX90A702, a highly linear, medium-power amplifier operating in Frequency Range 2 (FR2) from 26.5 to 29.5 GHz for 5G New Radio (NR) bands n257 and n261 (Fig. 1).

    Reply
  19. Tomi Engdahl says:

    Nokia edelleen kolmanneksi suurin tukiasemissa
    https://etn.fi/index.php?option=com_content&view=article&id=13812&via=n&datum=2022-08-02_15:52:32&mottagare=30929

    Huawein monessa maassa kohtaamien ongelmien piti johtaa yhtiön markkinaosuuden putoamiseen, mutta näin ei ole käynyt. Yhtiö jatkaa tänä vuonnakin kärjessä 29 prosentin markkinaosuudella. Ericsson on toiseksi suurin ja Nokia jatkaa kolmosena.

    Reply
  20. Tomi Engdahl says:

    Nokia: ensimmäistä kertaa neljä kanavaa yhdessä toisen polven 5G-verkossa
    https://etn.fi/index.php/13-news/13844-nokia-ensimmaeistae-kertaa-neljae-kanavaa-yhdessae-toisen-polven-5g-verkossa

    Englantilaisesta BT:stä on tullut ensimmäinen operaattori Euroopassa, joka on yhdistänyt neljä kantoaaltoa toisen polven 5G Standalone eli SA-verkkoon. Nokian kanssa saavutettu läpimurto ennakoi 5G:n seuraavaa vaihetta BT:n 5G-verkossa, joka toimii kuluttajamarkkinoilla nimellä EE.

    Yhteistyössä Nokian kanssa BT:n Networks-tiimi on onnistuneesti yhdistänyt neljä matalakaistaista ja keskikaistaista radiokanavaa (2,1 – 2,6 – 3,4 – 3,6 GHz) käyttämällä Nokian 5G radioverkkotekniikkaa EE:n live-verkossa.

    Reply
  21. Tomi Engdahl says:

    Nokian tukiasemat nousevat taivaalle
    https://etn.fi/index.php/13-news/13847-nokian-tukiasemat-nousevat-taivaalle

    Läheskään kaikkialla mobiiliverkot eivät kuulu, mutta tällöin avuksi tulevat satelliittiyhteydet. Ne kuitenkin yleensä edellyttävät omia laitteitaan. Nyt AST SpaceMobile aikoo viedä Nokian AIrScale-tukiasemia taivaalle, jolloin satelliittiyhteyksiä voisi käyttää tavallisilla puhelimilla.

    AST aikoo laukaista BlueWalker 3 -testisatelliitin matalalle radalleen syyskuun puolivälissä. Lopullinen verkko koostuu 168 satelliitista. Jokainen niistä pitäisi sisällään Nokian tukiaseman. Tavoitteena on tarjota 4G- ja 5G-yhteyksiä myös paikoissa, missä verkot eivt normaalisti kuulu: merellä, vuoristoissa ja aavikoilla.

    AST operoi vain satelliittiverkkoa. Se tekee sopimuksia mobiilioperaattorien kanssa ja tällä hetkellä sopimukset on tehty operaattorien kanssa, joilla on yli 1,8 miljardia tilaajaa. Tavallaan kyse on mobiililaajakaistan tuomisesta maapallon lopuille ihmisille.

    Nokia toimittaa AST:lle laitteita AirScale-valikoimastaan, mukaan lukien tukiasemat, jotka käyttävät Nokian uusimman sukupolven ReefShark-järjestelmäpiirejä. AST SpaceMobile hyötyy Nokian modulaarisista kantataajuuskorteista, joilla voidaan lisätä kapasiteettia sinne, missä sitä tarvitaan. Raudan lisäksi Nokia toimittaa satelliitteihin NetAct-ratkaisunsa verkonhallintaan sekä optimointi- ja tekniset tukipalvelut.

    Verkon globaali peitto edellyttää AST:n mukaan noin 100 satelliitin laukaisemista radalleen.

    Reply
  22. Tomi Engdahl says:

    Nokia radio technology to enable AST SpaceMobile’s direct-to-cell phone connectivity from space
    https://www.nokia.com/about-us/news/releases/2022/07/28/nokia-radio-technology-to-enable-ast-spacemobiles-direct-to-cell-phone-connectivity-from-space/

    Nokia radio technology to enable AST SpaceMobile’s direct-to-cell phone connectivity from space

    Nokia wins five-year global 4G and 5G deal from AST SpaceMobile
    AST SpaceMobile plans to bring cellular connectivity directly to 4G and 5G devices via low Earth-orbiting satellites in collaboration with mobile network operators
    Nokia and AST SpaceMobile committed to finding real-world solutions to expand universal coverage and close the digital divide around the world

    Reply
  23. Tomi Engdahl says:

    BlueWalker 3 is a low Earth orbiting satellite and has an aperture of approximately 64 square meters (693 square feet), which is designed to communicate directly with cellular devices via 3GPP standard frequencies. Ultimately, AST SpaceMobile is aiming to deploy approximately 100 satellites to achieve substantial global mobile coverage.
    https://www.nokia.com/about-us/news/releases/2022/07/28/nokia-radio-technology-to-enable-ast-spacemobiles-direct-to-cell-phone-connectivity-from-space/

    Reply
  24. Tomi Engdahl says:

    Kattava 5G-testausratkaisu millimetriaalloille
    https://etn.fi/index.php/13-news/13825-kattava-5g-testausratkaisu-millimetriaalloille

    3GPP:n 5G-standardeissa uusin versio kulkee nimellä Release 17. Keväällä valmistuneet määritykset tuovat tekniikkaan paljon lisää, esimerkiksitaajuusalue laajenee yläpäässä aina 71 gigahertsiin asti. Rohde & Schwarz on nyt esitellyt kattavan testausratkaisun, joka tulee uusia määrityksiä.

    Uudet ohjelmistovaihtoehdot R&S SMW200A-signaaligeneraattorille ja FSW-signaalianalysaattoreille on päivitetty täyttämään uusimman 5G-spesifikaation vaatimukset. Release 17:n avainominaisuuksia ovat taajuusalueen laajennuksen lisäksi esimerkiksi ORCLL eli erittäin luotettava alhaisen latenssin tietoliikenne ja radioverkon viipalointi.

    Laajennus 71 gigahertsiin asti vaatii piirien ja laitteiden fyysisen kerroksen mukauttamista, erityisesti kahden uuden apukantoaallon välin lisäämistä (480 kHz ja 960 kHz) ja laajempien signaalin kaistanleveyksien tukemista jopa 2 GHz asti.

    Reply
  25. Tomi Engdahl says:

    One of 5Gs Biggest Features Is a Security Minefield https://www.wired.com/story/5g-api-flaws/
    TRUE 5G WIRELESS data, with its ultrafast speeds and enhanced security protections, has been slow to roll out around the world. As the mobile technology proliferatescombining expanded speed and bandwidth with low-latency connectionsone of its most touted features is starting to come in to focus. But the upgrade comes with its own raft of potential security exposures. A massive new population of 5G-capable devices, from smart-city sensors to agriculture robots and beyond, are gaining the ability to connect to the internet in places where Wi-Fi isn’t practical or available. Individuals may even elect to trade their fiber-optic internet connection for a home 5G receiver. But the interfaces that carriers have set up to manage internet-of-things data are riddled with security vulnerabilities, according to research that will be presented on Wednesday at the Black Hat security conference in Las Vegas.

    Reply
  26. Tomi Engdahl says:

    Practical 5G Applications in Industrial Automation
    https://www.digikey.com/en/articles/practical-5g-applications-in-industrial-automation?dclid=CNfg8r7QwPkCFQpJwgodq7MAGQ

    Wireless communications have become increasingly critical to communications for industrial automation. Now, fifth-generation (5G) cellular communication is widely heralded as the key wireless technology to advance the fourth industrial revolution — Industry 4.0 or the Industrial Internet of Things (IIoT). Some sources even suggest that 5G will be key to making consumer and other non-industrial IoT installations ubiquitous in large part because 5G facilitates the connection of staggering numbers of devices, wherever those devices happen to be located.

    But will 5G replace the array of wireless standards currently in operation? Will 5G come to outperform WiFi, Bluetooth, and IEEE 802.15.4 in applications where these other technologies currently lead? Or is 5G simply an improved technology for the few automated applications where older cellular technologies are used? What are 5G’s performance advantages, and to what extent are these already leverageable?

    To understand the answers to these questions, first consider how 5G differs from other cellular and non-cellular communications. 5G — currently being rolled out for mobile-phone and industrial networks — builds on previous 2G, 3G, and 4G generations of digital cellular technology. There was never a 1G, as 2G’s precursor was an analog wireless telephone technology having little in common with today’s networks. With 2G came the first digital technology and encrypted phone and short message service (SMS) communications. Global System for Mobile Communications (GSM) standards define 2G circuit-switched networks allowing full-duplex voice calls. Over the years, 2G networks were further enhanced by the first General Packet Radio Service (GPRS) and then Enhanced Data Rates for GSM Evolution (EDGE). GRPS and EDGE enabled transmission of general-purpose data packets for internet connectivity with increasing data rates, which is why networks with these capabilities are sometimes called 2.5G and 2.75G technologies respectively.

    3G further improved data transfer rates — even to the point of enabling video calls. Associated standards include CDMA2000 and various forms of High-Speed Packet Access (HSPA).

    Next came 4G and even greater data transfer rates through the Long Term Evolution (LTE) and WiMax standards, which utilize multiple-input and multiple-output (MIMO) transmissions.

    5G evolved from 4G, with the first commercially available 5G network products released in late 2018. For historical perspective on the lead-up to this development, read this 2016 Digi-Key article: How 5G Will Change the Industrial Internet of Things. Of highest interest to private and commercial users is how 5G networks must be able to support data rates of several tens of Mb/sec for tens of thousands of users. They must also be able to provide a 1 Gbit/sec connection to tens of people within a given office.

    The other characteristics of 5G that are most relevant to industrial-automation applications. More specifically, 5G networks must allow hundreds of thousands of simultaneous connections with very low latency and highly reliable coverage. These features are key to the massive sensor deployment associated with IIoT and machine-control applications.

    Alternative non-cellular wireless connectivity

    5G cellular technologies are not the only way to wirelessly connect industrial devices. Alternatives include WiFi, Bluetooth, and IEEE 802.15.4-based technologies.

    WiFi latency is typically 20 to 40 msec and has some issues with connection stability — meaning that it is not generally used for control and industrial automation applications. However, it’s currently used for condition monitoring of machines, motion sensors, and barcode scanners. IEEE 802.11ah (WiFi HaLow) operates around 900 MHz for ranges to 1 km with very low power consumption. This makes it competitive with IoT-specific 5G technologies, although it cannot match the low latency and high sensor density.

    Bluetooth Low Energy (Bluetooth LE) provides low-cost and low power connectivity, with limited speed and range, but it’s focused on consumer devices. IEEE 802.15.4 based technologies also emphasize low-cost and low-power over speed and range, with just 250 kbit/sec and a range of just 10 meters. However, because mesh network topologies are supported, networks can be extended beyond 10 m provided that no device is more than 10 meters from one other device in the network. Many low cost IoT devices use technologies such as 6LoWPAN, WirelessHART, and ZigBee. The most industrially focused of these, WirelessHART is supported by a wide range of industrial organizations including ABB, Siemens, the Fieldbus Foundation, and Profibus.
    Conclusion

    5G must be considered as a family of technologies. Impressive performance claims — including very high bandwidth, massive sensor density, and super-fast latency — aren’t simultaneously possible with any single technology. That means the most important industrial automation 5G implementations won’t simply appear as 5G mobile network services become ubiquitous. The high sensor density of automated installations will require IoT-specific technologies such as NB-IoT and LTE-M. The good news is that such technologies are already being introduced and seeing increased availability throughout the developed world — as well as the developing world. Engineers can expect steady 5G network capability gains in the coming years.

    Using 5G for control applications requiring very low latency is still somewhat further away. Low-power technologies such as NB-IoT and LTE-M 5G (and especially IoT-specific adaptations) will play a significant role in realizing Industry 4.0 and making machines smarter, factories more flexible, and processes less wasteful. Of course, 5G will continue to compete with noncellular WiFi, Bluetooth, and IEEE 802.15.4-based technologies. Ultimately, all this will spur higher automation productivity.

    In short, 5G and other forms of secure and flexible wireless connectivity will enable the sensor density required for big data analytics to fully characterize production processes, optimize maintenance programs, coordinate material flows, and enable autonomous robot collaborations.

    Read the related Digi-Key article: 5G Doesn’t Currently Provide All That It Promises

    The Promise of 5G: Hype versus Reality
    https://www.digikey.com/en/articles/the-promise-of-5g-hype-versus-reality

    Reply
  27. Tomi Engdahl says:

    Ruotsissa nopein 5G
    https://etn.fi/index.php/13-news/13878-ruotsissa-nopein-5g

    Ooklan nopeustestien mukaan Pohjoismaat menestyvät hyvin 5G-datanopeuksien vertailussa. Suomalaisittain tulokset jättävät toki karvaan maun, koska listan kärjessä komeilee Ruotsi ennen Norjaa. Suomi jää vertailussa pronssille.

    Reply
  28. Tomi Engdahl says:

    Space 5G Is On the Launchpad Standard handsets on Earth, in some locations, will soon connect directly to satellites for remote roaming
    https://spectrum.ieee.org/5g-satellite?share_id=7189003

    The next generation of cellphone networks won’t just be 5G or 6G—they will be zero g. In April, Lynk Global launched the first direct-to-mobile commercial satellite, and on 15 August a competitor, AST SpaceMobile, confirmed plans to launch an experimental direct-to-mobile satellite of its own in mid-September. Inmarsat and other companies are working on their own low Earth orbit (LEO) cellular solutions as launch prices drop, satellite fabrication methods improve, and telecoms engineers push new network capabilities.

    LEO satellite systems such as SpaceX’s Starlink and Amazon’s Kuiper envision huge constellations of satellites. However, the U.S. Federal Communications Commission just rejected SpaceX’s application for some of the US $9 billion federal rural broadband fund—in part because the Starlink system requires a $600 ground station. Space-based cell service would not require special equipment, making it a potential candidate for rural broadband funds if companies can develop solutions to the many challenges that face satellite-based smartphone service.

    “The main challenge is the link budget,” says electrical engineer Symeon Chatzinotas of the University of Luxembourg, referring to the amount of power required to transmit and receive data between satellites and connected devices. “Sending signals to smartphones outdoors could be feasible by using low earth orbit satellites with sizable antennas in the sky. However, receiving info would be even more challenging since the smartphone antennas usually disperse their energy in all directions.”

    “From a nerdy engineering perspective, what’s happening is that network architectures are diverging.”
    —Derek Long, Cambridge Consultants

    The typical distance from a phone to an LEO satellite might be 500 kilometers, at least two orders of magnitude more than typical signal transmission distances in urban settings, so the dispersion of the phone’s power would be at least eight times greater, and would be further complicated by the phone’s orientation. It is unlikely that a satellite-smartphone connection would work well when the handset is inside a building, for example.

    Lynk Global’s initial offering, which it predicts will be available in late 2022, is narrowband—meaning limited voice calls, texting, and Internet of Things (IoT) traffic. That might not allow plutocrats to make 4K video calls from their ocean-faring yachts, but it would be enough for ship insurance companies or rescue services to remain in contact with vessels in places where they couldn’t be reached before, using off-the-shelf cellular devices. AST SpaceMobile’s is aiming for 4G and 5G broadband service for mobiles.

    AST satellites will use a phased array antenna, which consists of many antennas fanned out around the satellite. Each portion of the antenna will transmit within a well-defined cone terminating at the Earth’s surface;

    The size of the coverage zone on the ground should exceed the limited size of those created by Alphabet’s failed balloon-based Project Loon. Broader coverage areas should allow AST to serve more potential customers with the same number of antennas. The low earth orbit AST is experimenting with yields roundtrip signal travel times of around 25 milliseconds or less, an order of magnitude faster than is the case for higher-orbit geostationary satellites that have provided satellite telephony until now.

    Plenty of behind-the-scenes technical work remains. The relatively high speed of LEO satellites will also cause a Doppler shift in the signals for which the network will have to compensate, according to a recent review in IEEE Access. New protocols for handoffs between satellites and terrestrial towers will also have to be created so that an active call can be carried from one cell to the next.

    The international telecoms standards group 3GPP began providing guidelines for so-called non-terrestrial networks in March in the 17th iteration of its cellular standards. “Non-terrestrial networks” refers not just to LEO satellites, but also high-altitude platforms such as drones or balloons.

    Non-terrestrial networks will need further updates to 3GPP’s standards to accommodate their new network architecture, such as the longer distances between cell base stations and devices.

    For example, Stratospheric Platforms earlier this year tested a drone-based network prototype that would fly at altitudes greater than 18,000 meters. Its behavior as part of a 5G network will differ from that of a Lynk Global or AST satellite.

    “From a nerdy engineering perspective, what’s happening is that network architectures are diverging. On the one hand small cells are replacing Wi-Fi. On the other hand [telecom operators] are going to satellite-based systems with very wide coverage. In the middle, traditional macrocells, which are kind of difficult economically, are being squeezed,”

    If telecom operators succeed, users won’t even notice their space-age smartphone networks.

    “When you buy a phone, you expect it to work. Not just where someone says it will work, but everywhere. This is a step toward making that a possibility,” Long says.

    Reply
  29. Tomi Engdahl says:

    5G in space

    Space 5G Is On the LaunchpadStandard handsets on Earth, in some locations, will soon connect directly to satellites for remote roaming
    https://spectrum.ieee.org/5g-satellite#amp_tf=L%C3%A4hde%3A%20%251%24s&aoh=16606670886263&referrer=https%3A%2F%2Fwww.google.com&ampshare=https%3A%2F%2Fspectrum.ieee.org%2F5g-satellite

    Reply
  30. Tomi Engdahl says:

    Downtime is unacceptable in any communication system, especially new 5G technologies
    5G macro base stations must be robust to powerline surges and electrical disturbances such as lightning-induced transients and other transients and overloads to achieve high reliability.

    It is also essential to safeguard base station electronics against environmental hazards such as electrostatic discharge (ESD) strikes.

    Designing to Protect 5G Macro Base Stations for High Reliability
    https://www.allaboutcircuits.com/industry-articles/designing-to-protect-5g-macro-base-stations-for-high-reliability?utm_medium=email&_hsmi=223843389&_hsenc=p2ANqtz-9Ynw6jEfcxt4Q2r6-2a3odMbEAkV4JhDzaXQXSr8n1Szzaz8vXNCsTrc_64QQvfbtkwL6qyF0W3CVqunv9TkyhnS1bX3sUKHG6ppEYB3pYMPFKU_w&utm_content=223825420&utm_source=hs_email

    In this article, learn about protecting three major base station systems, the baseband unit, the power supply, and the backup battery system.

    Downtime is unacceptable in any communication system, and that certainly includes the new 5G cellphone communication systems.

    Attaining high reliability often requires that the 5G macro base stations be robust to powerline surges and electrical disturbances such as lightning-induced transients and other transients and overloads.

    In addition to potential damage originating on the power line, the base stations must be sturdy to environmental electrical hazards such as lightning and electrostatic discharge (ESD) strikes. Design engineers need to protect their 5G base stations from these electrical hazards to prevent damage to the bases station and avoid critical downtime.

    Protecting 5G Macro Base Station Amplifiers and Antennas From Electrical Hazards
    https://www.allaboutcircuits.com/industry-articles/protecting-5g-macro-base-station-amplifiers-and-antenna-systems-from-electrical-hazards/

    This article dives into protecting tower-mounted amplifiers and advanced antenna systems of 5G macro base stations from electrical hazards.

    The next generation of cellular communication, 5G technology, offers increased speed, greater consistency, and lower latency.

    This fifth generation of mobile networking is expected to have the capacity to allow communication among one million devices/km2, which is a factor of 10 greater than the 4G technology.

    The advances of 5G could enhance consumer experiences and facilitate emerging technologies such as:

    Automated vehicles
    Smart homes/cities
    Automated factories
    Advancement in agricultural technology

    While these are just a few areas where 5G will have an impact, it all is highly dependent on the data centers and supporting communications base stations.

    Reliability of the infrastructure equipment is critical for the successful adoption of 5G networks.

    Electronics design engineers need to protect their 5G infrastructure designs by developing circuits that protect against five sources of electrical hazards that affect the reliability and the lifetime of their equipment.

    These hazard sources are:

    Lightning-induced surges
    Transient voltage surges resulting from large inductive load switching caused by motors
    Electrostatic discharge (ESD)
    Current overloads
    Short circuits

    This article provides a detailed description of a macro base station and offers recommendations for protecting the base station circuitry, namely the tower-mounted amplifier and the advanced antenna systems from sources of electrical hazards.

    Reply
  31. Tomi Engdahl says:

    Nokia and Google trial innovative slicing solution for Android devices and 4G/5G networks
    Press Release
    https://www.nokia.com/about-us/news/releases/2022/08/25/nokia-and-google-trial-innovative-slicing-solution-for-android-devices-and-4g5g-networks/

    Nokia and Google trial innovative slicing solution for Android devices and 4G/5G networks

    New solution connects a smartphone to multiple network slices simultaneously across consumer and enterprise applications; each slice can have different network capabilities
    Utilizes UE Route Selection Policy (URSP) technology that enables a device to dynamically select and connect to different network slices; new slicing service can be activated in real-time
    Enables mobile operators to create new services by maximizing their network assets such as spectrum and coverage

    Espoo, Finland – Nokia and Google today announced that they have successfully trialed innovative network slice selection functionality on 4G/5G networks using UE Route Selection Policy (URSP) technology and Google Pixel 6 (Pro) phones running Android 13. Once deployed, the solution will enable operators to provide new 5G network slicing services and enhance the customer application experience of devices with Android 13. Specifically, URSP capabilities enable a smartphone to connect to multiple network slices simultaneously via different enterprise and consumer applications depending on a subscriber’s specific requirements.

    The trial, which took place at Nokia’s network slicing development center in Tampere, Finland, also included LTE-5G New Radio slice interworking functionality. This will enable operators to maximally utilize existing network assets such as spectrum and coverage.

    URSP capabilities extend network slicing to new types of applications and use cases, allowing network slices to be tailored based on network performance, traffic routing, latency, and security. For example, an enterprise customer could send business-sensitive information using a secure and high-performing network slice while participating in a video call using another slice at the same time. Additionally, consumers could receive personalized network slicing services for example for cloud gaming or high-quality video streaming. The URSP-based network slicing solution is also compatible with Nokia’s new 5G radio resource allocation mechanisms as well as slice continuity capabilities over 4G and 5G networks.

    Reply
  32. Tomi Engdahl says:

    Uusi NTN-tekniikka: 5G korvaa satelliittipuhelimet
    https://etn.fi/index.php/13-news/13928-uusi-ntn-tekniikka-5g-korvaa-satelliittipuhelimet

    Kesällä 3GPP-järjestössä hyväksytty uusi 5G-standardi eli Release 17 tuo monia uudistuksia ja laajennuksia 5G-verkkostandardeihin. Yksi uudistuksista on NTN (Non-terrestrial networks), joka laajentaa 5G-yhteydet avaruuteen. Mediatek on jo demonnut NTN-datansiirtoa yhdessä mittauslaitevalmistaja Rohde & Schwarzin kanssa.

    Uuden 5G-standardin NTN-osa tuo mukaan uusia verkkotopologioita. Niiden avulla linkit toimivat sekä korkealla että matalalla radalle lentäviin satelliitteihin. Tarkoitus ei ole, että NTN kattaa vain puhelu- ja laajakaistapalvelut, vaan yhteyksien pitää tukea myös NB-IoT- ja LTE-M-tyypin IoT-linkkejä.

    NTN-standardointi alkoi jo edeltävien Release 15- ja 16-standardien kehitystyön kanssa, jolloin identifioitiin NTN-kanavamallit ja tarvittavat lisäykset NR-määrityksiin. Suurimmat haasteet tekniikassa liittyvät satelliittien korkeuteen ja kovaan nopeuteen. Korkeus johtaa suuriin häviöihin signaalipolulla ja pidempään RTT-kiertoaikaan radiosta radioon. Matalan radan LEO-satelliiteissa radiolinkki kärsii suuresta Doppler-ilmiöstä ja lisäksi maa-asemat pitää vaihtua nopeasti.

    Haasteita siis riittää NTN-tekniikan kehityksessä. Kehitys kuitenkin etenee kovaa vauhtia. Ericsson, Qualcomm ja Thales ilmoittivat pari viikkoa sitten kehittävänsä LEO-satelliittien kautta toimivia 5G-yhteyksiä.

    Päätelaite oli varustettu Mediatekin NR NTN -testipiirisarjalla.

    Myös Nokia on kiinnostunut satelliittiyhteyksistä. Aiemmin tässä kuussa yhtiö ilmoitti, että AST SpaceMobile aikoo viedä Nokian AirScale-tukiasemia taivaalle, jolloin satelliittiyhteyksiä voisi käyttää tavallisilla puhelimilla. AST aikoo laukaista BlueWalker 3 -testisatelliitin matalalle radalleen syyskuun puolivälissä.

    Reply
  33. Tomi Engdahl says:

    5G Networks Are Worryingly Hackable A shift to the cloud is opening the industry up to new attacks
    https://spectrum.ieee.org/5g-virtualization-increased-hackability?share_id=7193199

    Prominent tech firms like Microsoft and NEC have recently expressed concerns over the security and perhaps too-rapid adoption, respectively, of critical 5G technologies. Now German security researchers have given some substance to the industry’s fears and unease.

    At a hacker conference held in the Netherlands last month, Karsten Nohl, founder of Berlin-based Security Research Labs, outlined how his team had breached live 5G networks in a series of “red teaming” exercises—where hackers are hired by a company to test their defenses. In most cases they were able to take control of the network, he says, potentially allowing them to steal customer data or disrupt operations.

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*