Debunking The Unscientific Fantasy Of 100% Renewables

Mark Jacobson of Stanford said America could easily become 100% renewable by mid-century. Jacobson published a paper in 2015 that claimed we could get rid of all other energy sources except wind and solar, and a tiny bit of other renewables, by 2050, and that it would be easier and cheaper than any other alternative mix. Jacobson’s paper has become the bible of alternative energy. It has also spawned a horde of state and federal policies.

There is one big problem: Jacobson’s claim is at complete odds with serious analyses and assessments. It seems that the paper has major errors pointed out by the scientific community. It seems that the mandated goals can’t be achieved with available technologies at reasonable prices


  1. Tomi Engdahl says:

    Energy generation: using various power sources

    Despite (or as a result of) the economic downturn, the use of renewable energy options have grown over the past several years, supported by federal and state programs including federal tax credits, state renewable portfolio standards, and a federal renewable fuels standard.

    Learning objectives:

    Discuss the renewable energy options available to engineers when designing power systems.
    Review various alternative power sources, such as combined heat and power (CHP).
    Learn about resilient power options.

    Failure of power generation systems serving hospitals, airports and transportation systems, water- and waste-treatment plants, police stations, and public safety food distribution could result in supply shortages, considerable disturbance to public order, and a significant economic impact both regionally and nationally. The need for reliable power at every building is essential, but in recent years, several blackouts in the U.S. have highlighted the need for resilient power systems at critical facilities.

    Defining dispatchable and non-dispatchable technologies

    Owners of critical infrastructures need to reconsider their power and backup power systems to be more resilient with the constant updates in technology. Rather than relying on more diesel generators or stand-alone nondispatchable options, which in most cases are very expensive, integrating nondispatchable designs with dispatchable systems is a good practice. Part of this is understanding the definitions of both dispatchable and nondispatchable technologies. A dispatchable source of electricity is an electrical power system, such as a power plant, that can be turned on or off and can adjust its power-output supply based on demand. Most conventional power sources, such as coal or natural gas power plants, are dispatchable systems. In contrast, many renewable energy sources are nondispatchable. Renewable sources, such as wind and solar power, generate electricity based on variable sources, which affects the flow of output energy.

  2. Tomi Engdahl says:

    The True Cost of Solar Energy

    The solar energy sector has grown 68% over the last decade, thanks to hefty government subsidies paid for by tax dollars. Here’s the cloudy truth about solar energy

    Americans have seen some interesting changes in the Oval Office to say the least, but one thing that has not changed much is our consumption of renewable energy. Solar and wind energy made up 47% of new electric capacity last year, and the renewables sector has grown steadily since the mid-2000s.

    Part of the reasoning behind this is cost. Installation costs for solar infrastructure have fallen 70% since 2006. Many homeowners have also done away with their electricity bill, thanks to net metering. But while the technology has become more accessible to homeowners and enterprises alike, there is a hidden cost to solar energy that lies in hefty government subsidies.

    Solar panel technology has advanced considerably in the last decade. Solar panels are divided into three main technologies: monocrystalline, polycrystalline, and thin-film. Each type of panel utilizes different technology to harness the sun’s rays and has a different range of applications.

    Monocrystalline (mono) panels are the most efficient solar panel in terms of power output relative to panel size. These panels have the highest efficiency rating on the market at 15-22%, and therefore require the least amount of space. Mono panels also have the longest lifespan (25 years or more), due to the high-purity silicon used during manufacturing. Mono panels have the highest upfront costs of all solar technologies.

    Polycrystalline (poly) solar panels are manufactured using several silicon crystals, and typically carry an efficiency rating of 13-17%. Poly panels require more space to match the power output of mono panels due to a lower silicon purity. However, manufacturing poly panels is a much simpler process, making the technology less expensive. Poly panels also have a lifespan of about 25 years, and over time may prove to be the most cost-effective.

    Thin film (TF) is a newer technology made possible by depositing a photovoltaic material onto a surface. The photovoltaic materials used are not as energy-efficient as crystallin silicon, but still get an energy efficiency rating of 7-13%. TF panels require much more space to produce a commercially significant wattage, limiting the potential for residential installations. TF panels also lack the durability of mono or poly panels. Still, TP panels are much cheaper to produce than mono or poly panels, and can even be made flexible

    The ROI

    Calculating ROI depends on several factors, such as the plot available for infrastructure, location, and amount of solar radiation per year. If roof space is limited, mono panels could offer consumers the most output. If a location is large enough to accommodate poly panels, this type of infrastructure could produce the same output as the mono panels, at a savings of 10 to 20%.

    The long-term value of a solar installation will largely depend on how it is financed. Buying the system upfront yields the best ROI, but even a $0-down solar loan could provide saving

    The Truth Behind Solar Subsidies

    The cost of solar infrastructure and installations has fallen largely due to government subsidies. In fact, some say solar energy could not survive at all without massive government subsidies. In terms of production, solar energy has received ten times the subsidies all other forms of energy. Subsidies for solar directly affect the production of electricity, directly affecting cost and pricing. Between 2010 and 2016, subsidies for solar energy ranged from 10¢ to 88¢ per kWh, while subsidies for coal, natural gas, and nuclear were from 0.05¢ to 0.2¢.

    These subsidies incentivize solar panels, but end up increasing the cost of the electricity they generate. This cost is transferred directly to the ratepayers via utility bills.


Leave a Comment

Your email address will not be published. Required fields are marked *