Electronics design ideas 2019

Innovation is critical in today’s engineering world and it demands technical knowledge and the highest level of creativity. Seeing compact articles that solve design problems or display innovative ways to accomplish design tasks can help to fuel your electronics creativity.

You can find many very circuit ideas at ePanorama.net circuits page.

In addition to this links to interesting electronics design related articles worth to check out can be posted to the comments section.

 

 

 

 

1,929 Comments

  1. Tomi Engdahl says:

    How to Solve Analog High Voltage Delivery Challenges with a Bootstrap Approach
    https://www.digikey.com/en/articles/how-to-solve-analog-high-voltage-delivery-challenges?dclid=CNLS0oShiPQCFUT6sgodkDoIPQ

    It’s a unique challenge to deliver the hundreds of analog volts that automated test equipment or precision control systems frequently require. Conventional operational amplifiers (op amps) cannot service the high output voltage swings, while discrete amplifier alternatives require a high degree of tweaking and consume more pc board real estate.

    However, there is another option: bootstrap the combination of a high voltage rail-to-rail output op amp and a pair of FETs that are able to withstand high breakdown voltages.

    This article will describe the problems high analog voltages present and common ways to solve them. It will then show how to use a bootstrap approach using a high voltage precision amplifier from Analog Devices, along with high voltage MOSFETs from Microchip Technology and Infineon Technologies.

    These will be used to create a precision, high performance solution that provides twice the amplifier’s nominal signal range while continuing to provide higher performance with minimal board real estate.

    The bootstrapping configuration controls a device’s supply voltages in relation to its output voltage. The bootstrap circuit has a pair of discrete transistors and a resistive bias network

    Many high voltage amplifiers eliminate the need for a bootstrap power supply. For example, the Analog Devices 10 megahertz (MHz) ADHV4702-1BCPZ shown in the Figure is a ±110 volt power supply that suffices for most high voltage applications. However, if the system requires yet higher voltages, the bootstrap approach easily doubles this circuit’s operating range.

    To execute the boostrap, Infineon Technologies’ IRFP4868PBFN-channel MOSFET is used as Q1. This device has a breakdown voltage of 300 volts and ID max of 70 A. Q2 is the TP2435N8-G P-channel MOSFET from Microchip Technology. This has a breakdown voltage of 350 volts.

    In Figure 1, the ADHV4702-1 precision amplifier has an operating supply voltage range of ±12 volts to ±110 volts. With a ±110 volt supply voltage, the typical output voltage range is ±108.5 volts. With ±VS equaling ±300 volts, this bootstrap circuit is a foundation for an amplifier that can attain an output swing of ±120 volts or more.

    Reply
  2. Tomi Engdahl says:

    Smart DAC Devices Simplify and Improve Designs
    Nov. 8, 2021
    Sponsored by Texas Instruments: Factory-programmable precision DACs incorporate NVM, programmable state-machine logic, and PWM generators to serve multiple use cases such as LED fade-in/fade-out in consumer items and 555 timer replacement.
    https://www.electronicdesign.com/technologies/analog/article/21179748/texas-instruments-smart-dac-devices-simplify-and-improve-designs?utm_source=EG%20ED%20Analog%20%26%20Power%20Source&utm_medium=email&utm_campaign=CPS211025021&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Engineers who need to precisely generate an analog output and control auxiliary functions typically employ a precision digital-to-analog converter (DAC) plus a combination of discrete analog components and a microcontroller (MCU). The effort required to choose the right components, write software for the MCU, and meet relevant regulatory requirements can be unnecessarily complicated when all you want to do is implement some simple, basic functions.

    An alternative is to use a new type of device called a smart DAC—a factory-programmable precision DAC that has integrated nonvolatile memory (NVM), programmable state-machine logic, pulse-width-modulation (PWM) generators, and custom waveform generators.

    Software-based MCU designs remain useful for many primary monitoring and control applications. However, they can consume excessive resources for secondary applications or subsystems that only require auxiliary voltage margining, biasing, or trimming. Applications like lighting control (turning on a light when you open your oven or car door, for example) need only a simple sense-measure-control feedback loop. For these applications, a smart DAC such as Texas Instruments’ DAC53701 (Fig. 1) can help.

    For automotive applications, smart DACs with Automotive Electronics Council-Q100 (AEC-Q100) qualification can support memory retention for 20 years at 125°C operating temperatures. One example requiring such capability is the control of daytime-running-light (DRL) LEDs, which must operate while exposed to heat and sunlight. Because LED reliability is inversely proportional to operating temperature, DRL LEDs require a thermal foldback function, which a smart DAC can implement. Smart DACs also help control tail-light animations and turn signals.

    For other automotive as well as appliance and consumer-electronics lighting applications, smart DACs can produce fade-in and fade-out signals to control illumination levels based on a general-purpose input (GPI)—e.g., a high/low sensor input indicating whether a refrigerator door is open or closed.

    In addition, smart DACs may find use in medical applications, where they can generate alarm signals for the patient-monitoring equipment used in intensive-care units. Smart DACs are able to provide preconfigured audio alarm patterns based on various trigger conditions. These alarms can continue to work even if system software fails, thereby potentially easing the medical-equipment regulatory approval process.

    A smart DAC also can serve as an alternative to the venerable 555 timer (Fig. 3), which engineers have used for years to solve a variety of system design problems

    But if your application is able to work within the smart DAC voltage and current ratings, the smart DAC can offer significant benefits. For example, waveform creation with 555 timers relies on a collection of external components such as capacitors that often have wide tolerances.

    Smart DACs don’t rely on external capacitors for timing elements and can achieve much higher accuracy, with most errors calibrated out during production. In PWM applications, the DAC53701 smart DAC voltage-to-duty-cycle ratio is a linear function with less than 1% duty-cycle error. In contrast, the 555 timer exhibits about a nonlinear 5% duty-cycle error.

    Just like a 555 timer, a smart DAC can implement a pulse generator with a variable frequency and duty cycle, it will convert an analog or GPI input to a PWM output, and it is able to act as a comparator with hysteresis.

    a smart DAC can be configured as a comparator with hysteresis that has two independent threshold levels programmed into registers within the smart DAC.

    Conclusion

    Smart DACs allow you to replace discrete analog circuits and MCUs with a one-chip solution that simplifies design, reduces system cost, and offers improved performance.

    Reply
  3. Tomi Engdahl says:

    Time-Domain Techniques for De-embedding and Impedance Peeling
    https://teledynelecroy.com/doc/time-domain-de-embedding-and-peeling?utm_source=electronic-design&utm_medium=ai-ads&utm_content=wavepulser&utm_campaign=2021-electronic-design-ai-ads-wavepulser

    De-embedding is a common problem in making signal integrity measurements because often, the interconnection between the measurement instrument and the device under test (DUT) requires fixtures, cables, and/or probes. While usually it is not too much of a problem to calibrate the instrument to the end of the cables, which present a coaxial connector as the instrument port, the removal of what is between the instrument port and the desired reference plane of the DUT can prove problematic.

    Many techniques are possible within theWavePulser 40iX for de-embedding such as calibration, and adapter and fixture de-embedding. These techniques are well known by engineers who are familiar with microwave measurements and the vector network analyzer (VNA).

    Less well known are time-domain techniques that are available in the WavePulser. These techniques are related to port extension employed in the VNA. These time-domain techniques will be described subsequently.

    Reply
  4. Tomi Engdahl says:

    What is a Transducer? Types of Transducers and Applications
    https://www.electricaltechnology.org/2021/11/transducer.html

    Reply
  5. Tomi Engdahl says:

    EEVBlog 1436 – The TOP 5 Jellybean OPAMP’s
    https://www.youtube.com/watch?v=uq1DMWtjL2U

    Dave looks at his TOP 5 (plus change) Jellybean OPAMP’s, and explains why you need to know them.

    00:00 – Jellybean OPAMP’s
    01:47 – LM358
    07:51 – FET Input TL071/72/74
    11:28 – CMOS LMV358
    15:17 – LM324
    17:23 – The LM321 is NOT a thing
    19:09 – Oh, all right, the LM741
    19:41 – RC4558
    21:11 – The Audiophiles go WILD! The NE5532
    22:06 – OP07 Precision OPAMP

    https://www.eevblog.com/forum/blog/eevblog-1436-the-top-5-jellybean-opamps/

    Reply
  6. Tomi Engdahl says:

    11 Myths About Analog Compute
    Nov. 9, 2021
    In the beginning there was analog. Then digital computing appeared. But analog never went away.
    https://www.electronicdesign.com/technologies/analog/article/21180871/mythic-11-myths-about-analog-compute?utm_source=EG%20ED%20Analog%20%26%20Power%20Source&utm_medium=email&utm_campaign=CPS211025022&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    Comparing digital compute with analog compute
    What strides have been taken to make analog a better alternative to digital?
    How deep neural networks come into play.

    In 1974, Theodore Nelson, the inventor of hypertext, wrote in his book “Computer Lib/Dream” that “analog computers are so unimportant compared to digital computers that we will polish them off in a couple of paragraphs.” This popular attitude toward analog computing hasn’t shifted much in the decades since then, despite the incredible advances made in analog computing technology.

    The computational speeds and power efficiency of analog compared to digital have been promising for a long time. The problem is developing analog systems has been traditionally beset by a number of hurdles, including the size and cost of analog processors. The explosion of the IoT and the growth of AI applications have retriggered interest in developing new approaches of analog computing to solve some of the challenges associated with increasingly complex workloads.

    Edge AI applications need to be low-cost, small-form-factor devices with low latency, high performance, and low power (see figure). It might surprise many people that analog solutions offer a very compelling solution to these challenges. Recent advances in analog technology, combined with the use of non-volatile memory like flash memory, have eliminated the traditional hurdles.

    What follows are 11 common myths associated with analog computing.

    1. Digital compute is better than analog compute.

    Digital computing solutions have ushered in the Information Age and transformed what once were room-sized computers into incredibly powerful machines that can fit in the palm of our hands. It’s fair to say that for a long time, digital computing solutions were superior to analog solutions for most applications. However, times have changed and when we look at the needs of the future—one where every device will be equipped with powerful AI at the edge—it’s clear that digital compute won’t be able to keep up.

    2. Moore’s Law will continue scaling.

    Today, only a few manufacturers can follow the Moore’s Law trend—down from dozens in the 1990s—as it’s simply too cost-prohibitive. Process node improvements have slowed down while manufacturing costs have been dramatically rising. Simply put, it’s no longer business as usual with Moore’s Law scaling; new approaches are needed for the next generation of AI processing.

    3. Analog systems are too complex to design.

    Modern electronic-design-automation (EDA) tools have come a long way to enable high-speed simulation of analog circuits with a high level of fidelity. In addition, the ability for analog circuits to automatically calibrate and compensate for error has progressed by leaps and bounds.

    4. Analog compute is mainly a research effort.

    In the 1950s and 1960s, analog computers started to become obsolete for commercial applications, although analog computing was still used in research studies and certain industrial and military applications. Of course, a lot has changed since then. Companies like Mythic are taking analog processors to production

    5. Analog systems aren’t capable of high performance.

    Analog circuits can be incredibly fast, since they don’t need to rely on logic propagating through digital logic gates, or digital values pulled out of memory banks. By using tiny electrical currents steered through flash-memory arrays, massively parallel matrix operations can be performed in less than one microsecond.

    Such performance makes analog systems ideal for compute-intensive workloads like video-analytics applications that use object detection, classification, and depth estimation.

    6. Analog is power-hungry.

    One under-the-radar problem is that digital systems are forced to store neural networks in DRAM, which is an expensive, inconvenient, and power-hungry approach. DRAM consumes lots of power both during active use and during idle periods, so system architects spend a great deal of time and effort to maximize the utilization of the processors.

    Another issue with digital systems is that they’re extremely precise, which comes at a huge cost in performance and power, especially when it comes to neutral networks.

    In practice, AI doesn’t need that level of precision. In fact, some analog processors, such as Mythic’s Analog Matrix Processor, which perform analog compute inside of very dense non-volatile memory, are already up to 10X more energy-efficient than digital systems (with the potential to be 100X to 1000X more energy-efficient for certain use cases). They’re also much faster and can pack 8X more information into the memory.

    7. Analog chips are expensive to design and manufacture.

    There has long been a perception that analog is much more expensive to design and manufacture than digital systems. However, the truth is that it’s becoming increasingly difficult for digital systems to keep up with the increasing costs of manufacturing and mask-set prices, which can reach beyond $100 million for the 1- to 3-nm range.

    Analog systems offer a host of performance and power advantages, while also being incredibly cost-efficient. This is because high performance and incredible memory density can be achieved on older process nodes with analog compute. These process nodes are significantly lower cost in terms of mask sets and wafer prices, are mature and stable, and have far greater manufacturing capacity compared to bleeding-edge nodes

    8. Analog systems—like digital systems—must store neural networks in DRAM.

    One of the most important aspects of hardware is how much memory can be packed into a processor per millimeter square, and how much power is drawn by the memory. For digital systems, the mainstream memories—SRAM and DRAM—tend to consume too much power, take up too much chip area, and aren’t improving fast enough to drive the improvements needed for today’s AI era.

    Analog systems have the advantage of being able to use non-volatile memory (NVM), which offers impressive densities and solves the power leakage problem. Some analog systems employ flash memory, one of the most common types of NVM,

    9. Analog can’t run complex deep neural networks.

    Conventional digital processing systems support complex deep neural networks (DNNs). The problem is that these platforms take up considerable silicon real estate, require DRAM, and consume lots of energy, which is why many AI applications offload most of the deep-learning work to remote cloud servers. For systems that require real-time processing for DNNs, the data must be processed locally.

    When analog compute is combined with flash technology, processors can run multiple large, complex DNNs on-chip. This eliminates the need for DRAM chips and enables incredibly dense weight storage inside a single-chip accelerator. Processors can further maximize inference performance by having many of the compute-in-memory elements operate in parallel. With the growing demand for real-time processing, this type of on-chip execution of complex DNN models will become increasingly critical.

    10. Analog systems aren’t as compact as digital systems.

    It’s true that analog systems have traditionally been far too big. However, new approaches make it possible to design incredibly compact systems. One reason is the high density of flash, so by combining analog compute with flash memory, it’s possible to use a single flash transistor as a storage medium, and multiplier, and an adder (accumulator) circuit.

    11. Analog systems aren’t resilient to changing environmental conditions.

    One strength of digital is that it has a wide tolerance for changing environmental conditions, such as changes in temperature and fluctuating supply voltages. In analog systems of the past, any tiny variations in voltage could result in errors when being processed.

    However, some approaches can make it possible for analog to have the same resiliency to different environmental conditions, and to deliver this at scale. Most modern analog circuits are software-controlled and use a bevy of compensation and calibration techniques. As a result, they can be manufactured in modern digital processes that sometimes exhibit a high degree of variation.

    Reply
  7. Tomi Engdahl says:

    LED driver basics
    Learn about a variety of LED driver design topics, from PWM and analog dimming methodologies to overcoming specific system design challenges.
    https://training.ti.com/led-driver-basics?HQS=app-psil-led-leddriverbasics-agg-tr-ElectronicDesign-wwe&DCM=yes&DCM=yes&dclid=CL_Jyp3mj_QCFUmQGAoddlMA3w

    Reply
  8. Tomi Engdahl says:

    Mikromoduulilla tarkkaa datankeruuta
    https://etn.fi/index.php?option=com_content&view=article&id=12811&via=n&datum=2021-11-11_15:33:17&mottagare=30929

    Analog Devicesin μModule-ratkaisu ADAQ4003 on tarkoitettu tarkkojen datankeruujärjestelmien suunnittelijoiden käyttöön. Moduulirakenne nopeuttaa komponenttien valintaa ja tuotantovalmiiden prototyyppien rakentamista.

    Järjestelmäarkkitehdit ja piiritason suunnittelijat käyttävät huomattavia t&k-resursseja kehittääkseen erittäin suorituskykyisiä ja tarkkoja lineaarisia erillislohkoja sovellustensa signaaliketjuihin (mittaus ja testaus, teollisuusautomaatio, terveydenhuolto, ilmailu, puolustus), joita järjestelmät hyödyntävät mittaukseen ja suojaukseen, datan keräämiseen ja muokkaamiseen. Tässä artikkelissa keskitytään erittäin tarkan datankeruun alijärjestelmiin.

    Heterogeeninen integrointi SiP-teknologian (System-in-Package) avulla edistää edelleen elektroniikkateollisuuden keskeisiä trendejä kuten siirtymistä suurempaan tiheyteen, parempaan toimivuuteen ja suorituskykyyn sekä pidempään vikaantumisväliin. Tämä artikkeli havainnollistaa, miten Analog Devices hyödyntää heterogeenistä integraatiota muuttaakseen tarkkojen muunnosten pelikenttää ja tarjotakseen ratkaisuja, joilla on merkittäviä vaikutuksia sovelluksiin.

    Tiedonkeruun signaaliketjuja kehittävät suunnittelijat vaativat yleensä suurta tuloimpedanssia, jotta voidaan käyttää suoria liitäntöjä erilaisiin antureihin. Signaaliketjuissa voi esiintyä vaihtelevia yhteismuotojännitteitä ja yksi- tai kaksinapaisia maatasoon verrannollisia tai differentiaalisia tulosignaaleja. Jos tutkitaan kokonaisvaltaisesti erilliskomponentein toteutettua tyypillistä signaaliketjua, on helppo ymmärtää joitakin järjestelmäsuunnittelun tärkeimpiä teknisiä kipupisteitä.

    Tämä FDA-vahvistin tarjoaa tarvittavan signaalinmuodostuksen tasonsiirtoineen ja vaimentaa signaalin sekä asettaa lähdön vaihtelemaan nollan ja viiden voltin välillä. Vaiheeltaan käänteiset signaalit tuottavat 10 Vpp differentiaalisen signaalin AD-muuntimen tuloasteelle dynaamisen alueen maksimoimiseksi.

    RC-suodin auttaa rajoittamaan kohinaa AD-muuntimen tuloissa ja vähentää SAR ADC:n kapasitiivisesta DAC-tulosta tulevien ’takapotkujen’ vaikutusta.

    HELPOTUSTA SUUNNITTELUTYÖHÖN

    Monet järjestelmien suunnittelijat toteuttavat samaa signaaliketju-arkkitehtuuria eri sovelluksille. Yksi ratkaisu ei kuitenkaan sovi kaikille, joten Analog Devices (ADI) on keskittynyt signaaliketjun yleisiin osiin eli signaalinkäsittelyyn ja digitointiin tarjoamalla signaaliketjuihin täydellisempiä μModule-ratkaisuja, joilla on pitkälle kehitetty suorituskyky ja jotka kaventavat kuilua erillisten standardikomponenttien ja erittäin pitkälle integroitujen asiakaskohtaisten IC-piirien välillä. Yhtiön kehittämä ADAQ4003 on SiP-ratkaisu, joka tarjoaa parhaan tasapainon t&k-kustannusten ja koon pienentämisen välille nopeuttaen samalla prototyyppien suunnitteluaikaa.

    Huipputarkkaan datankeruuseen tarkoitettu μModule-ratkaisu ADAQ4003 sisältää useita yleisiä signaalin käsittely- ja muokkaus- lohkoja sekä kriittisiä passiivi- komponentteja, jotka on yhdistetty yhdeksi moduuliksi käyttämällä ADI:n edistynyttä SiP-tekniikkaa. Pienikohinainen moduuli sisältää FDA- vahvistimen, vakaan referenssi- puskurin sekä 18 bitin erottelu- kykyyn yltävän 2 Ms/s SAR ADC -muuntimen.

    ADAQ4003 yksinkertaistaa erittäin tarkkojen mittausjärjestelmien signaaliketjujen suunnit- telua ja kehityssykliä siirtämällä komponenttien valinnan, optimoinnin ja osien sijoittelun suunnittelijalta valmiiseen moduuliin ja ratkaisee kaikki tärkeimmät edellä mainitut ongelmat. FDA:n ympärille sijoitettu tarkkuusvastusten ryhmä on muodostettu käyttämällä ADI:n omaa iPassives- teknologiaa, joka hoitaa piirien epätasapainon, vähentää loissignaaleja ja auttaa saavuttamaan jopa 0,005% vahvistuk- sen sovituksen sekä optimoidun ryömintätason (1 ppm/°C).

    ADAQ4003 sisältää ADC-ohjaimen ja AD-muuntimen välille sijoitetun yksinapaisen RC- suotimen, joka on suunniteltu optimoimaan asettumisaika ja tulosignaalin kaistanleveys. Kaikki tarvittavat suodatuskondensaattorit jännitteen referenssisolmulle ja teholähteille auttavat pitämään materiaalikulut kurissa.

    ADAQ4003 sisältää myös referenssipuskurin, joka on konfiguroitu ykkösvahvistukselle ohjaamaan optimaalisesti SAR ADC – referenssisolmun dynaamista tuloimpedanssia.

    TIHEYTTÄ JA HELPPOUTTA PIIRILEVYSUUNNITTELUUN

    ADAQ4003:n 7×7-millinen BGA- kotelo pienentää tarvittavan piirilevyalan alle neljäsosaan verrattuna perinteiseen erilliskomponentein toteutettuun signaaliketjuun (kuva 3), mikä mahdollistaa pienikokoiset lait- teet suorituskyvystä tinkimättä.

    Piirilevysuunnittelu on kriittinen vaihe signaalin eheyden säilyttämisessä ja signaaliketjulta odotetun suorituskyvyn saavuttamiseksi. ADAQ4003:n nastajärjestys helpottaa osien sijoittelua ja sallii analogisten signaalien sijoittamisen vasemmalle puolelle ja digitaalisten signaalien oikealle puolelle.

    ADAQ4003 sisältää kaikki tarvittavat (alhaisen ESR- ja ESL- lukeman) suodatuskondensaattorit REF- ja teholähde- nastoja (VS+, VS-, VDD ja VIO) varten. Nämä kondensaattorit tarjoavat korkeille taajuuksille matalaimpedanssisen polun maatasoon virtapiikkien suodattamiseksi.

    Ulkoisia suodatuskondensaattoreita ei vaadita ja ilman niitä toiminnassa ei ole havaittu mitään vaikutusta suorituskykyyn tai minkäänlaisia EMI-ongelmia. Vaikutusta suorituskykyyn testattiin ADAQ4003-evaluointi- kortilla poistamalla ulkoiset suodatuskondensaattorit referenssi- ja LDO-regulaattorien lähdöistä, jotka muodostavat sisäiset syöttölinjat (REF, VS+, VS−, VDD ja VIO). Kuvasta 4 nähdään, että kaikki häiriöt ovat alle –120 dB riippumatta siitä, käytetäänkö ulkopuolisia kondensaattoreita vai ei.

    ADAQ4003-PIIRIN OHJAUS PGIA-VAHVISTIMELLA

    Kuten aiemmin mainittiin, korkean tuloimpedanssin etuasteita vaaditaan tyypillisesti silloin, kun kytkeydytään suoraan erilaisiin antureihin. Suurin osa instrumentoinnista ja ohjelmoitavan vahvistuksen instrumentointivahvistimista (PGIA) käyttää yksipuolisia lähtöjä, jotka eivät voi suoraan ohjata täysin differentiaalista tiedonkeruun signaali- ketjua. Korkean impedanssin PGIA-vahvistinpiiri LTC6373 tarjoaa kuitenkin alhaisen kohinan ja särön sekä laajan kaistan- leveyden omaavat täysin differentiaaliset lähdöt, joilla voidaan suoraan ohjata ADAQ4003-moduulia tinkimättä tarkasta suorituskyvystä, joten se sopii monenlaisiin signaaliketjun sovelluksiin. LTC6373:n lähtö ja tulo ovat DC-kytkettyjä, lisäksi vahvistusasetus on ohjelmoitavissa (käyttäen A2-, A1- ja A0- nastoja).

    LTC6373-piiriä voidaan käyttää differentiaalisen tulon ja differentiaalisen lähdön sekä ±15 V kaksoissyötön konfiguraatiossa. LTC6373- vahvistinta voidaan tarvittaessa käyttää myös yksipuolisen tulon ja differentiaalisen lähdön kokoonpanossa. LTC6373 ohjaa suoraan ADAQ4003-moduulia vahvistusarvolla 0,454. LTC6373:n VOCM-nasta on kytketty maahan ja sen lähdöt vaihtelevat välillä -5,5…+5,5 V (vastakkaisessa vaiheessa). ADAQ4003-piirin sisäinen FDA muuttaa LTC6373:n lähdöt vastaamaan ADAQ4003:lle haluttua yhteismuotoista tulo- signaalia ja tarjoaa amplitudin, joka tarvitaan ADAQ4003 μModulen sisällä olevan AD- muuntimen differentiaalisen signaalialueen suurimman 2 x VREF huipusta huippuun – jännitteen saavuttamiseksi.

    SOVELLUSESIMERKKINÄ ATE

    Seuraavassa keskitytään siihen, miten erinomaisesti ADAQ4003 sopii automaattisissa mittaus- järjestelmissä (ATE) hyödynnettäviin SMU-mittausyksiköihin (Source Measurement Unit) ja teholähteisiin. Näitä modulaarisia instrumentteja käytetään testattaessa monenlaisia sirutyyppejä nopeasti kasvaville älypuhelin-, 5G-, ajoneuvo- ja IoT-markkinoille

    Reply
  9. Tomi Engdahl says:

    Ideal-Diode Controllers Help Boost Battery Input Protection Performance
    Nov. 1, 2021
    Sponsored by Texas Instruments: Ideal diodes and ORing controllers offer space-saving, scalable solutions to protect a system against reverse voltage or reverse current. They reduce the energy lost across the forward voltage drop of traditional diodes.
    https://www.electronicdesign.com/power-management/whitepaper/21179408/texas-instruments-idealdiode-controllers-help-boost-battery-input-protection-performance?utm_source=EG%20ED%20Analog%20%26%20Power%20Source&utm_medium=email&utm_campaign=CPS211013054&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  10. Tomi Engdahl says:

    Kestävämpään kehitykseen uudella tehoelektroniikalla
    https://etn.fi/index.php/13-news/12823-kestaevaempaeaen-kehitykseen-uudella-tehoelektroniikalla

    Maailmanlaajuisen väestönkasvun vuoksi sähkönkulutus on edelleen kohtuuttoman korkea. Tämä rasittaa käytettävissä olevia energiavaroja ja vaikuttaa myös vakavasti ympäristöön suurempina kasvihuonekaasupäästöinä. Onneksi kehitykseen voidaan vaikuttaa uusilla tehoelektroniikan ratkaisuilla.

    Kaksi tärkeintä aloitetta päästöjen vähentämisessä ovat uusiutuvan energian tuotantolaitosten laaja käyttöönotto ja ajoneuvojen sähköistäminen. Lähivuosina sähköajoneuvojen odotetaan kymmenkertaistuvan nykyisestä. Esimerkiksi Euroopan unioni pyrkii saamaan yli 30 miljoonaa sähköautoa teilleen tämän vuosikymmenen loppuun mennessä.

    Sähköautojen, teollisuuskäyttöjen ja uusiutuvan energian asettamat vaatimukset edellyttävät jatkuvaa sähköjärjestelmän innovaatiota. Laajan kaistaeron (WBG, wide bandgap) tekniikka on ollut avainasemassa tehokomponenttien suorituskyvyn parantamisessa ja mahdollistanut järjestelmän kokonaiskoon pienentämisen.

    Esimerkiksi piikarbidin (SiC) käyttö piin sijaan on johtanut paljon nopeampiin kytkentänopeuksiin, minkä ansiosta muunnoksen tehokkuutta voidaan parantaa dramaattisesti. SiC MOSFET – piirit korvaavat nyt suuria piipohjaisia IGBT-piirejä, ja sekä käynnistys- että sammutushäviöt ovat vähentyneet merkittävästi. Hyöty nähdään sekä sähköautoissa että uusiutuvan energian järjestelmissä käytettävissä DC/DC- muuntimissa.

    Samoin SiC MOSFET -moduulien suuremmat tehotiheydet merkitsevät sitä, että uusiutuvan energian invertterit, teollisuuskäytöt ja moottorin ohjausjärjestelmät voidaan tehdä paljon pienemmiksi samalla kun ne toimivat tehokkaammin. Ne pystyvät työskentelemään korkeammissa lämpötiloissa kuin piipohjaiset vastineisiinsa, joten myös luotettavuus paranee.

    Reply
  11. Tomi Engdahl says:

    FAQ: What Technologies Can Efficiently and Reliably Power the Cloud’s Datacenters?
    Oct. 29, 2021
    Learn how dedicated DC/DC power converters designed for datacenter equipment help make these power-hungry servers reliable, scalable, and capable of expansion.
    https://www.electronicdesign.com/resources/design-faqs/whitepaper/21179084/faq-what-technologies-can-efficiently-and-reliably-power-the-clouds-datacenters?partnerref=onsemiFAQ1-111121&utm_rid=CPG05000002750211&utm_campaign=36859&utm_medium=email&elq2=88f30cf00b4e471b9ef0bd4505e97be5&oly_enc_id=7211D2691390C9R

    With increasing demands for front-end cloud services, the back-end systems must be reliable, scalable, and capable of expansion. Dedicated DC/DC power converters in these servers employ multiphase topologies to deliver the required output current, with the switching of each phase controlled to optimize load regulation, ripple, transient response, and radiated and conducted noise emissions.

    Reply
  12. Tomi Engdahl says:

    Application Note
    Basics of Ideal Diodes
    https://www.ti.com/lit/an/slvae57b/slvae57b.pdf?HQS=app-psil-psw-lm7472xq1-asset-mc-ElectronicDesign-wwe&ts=1637040689629

    Schottky diodes are widely used in power system designs to provide protection from various input supply
    fault conditions and to provide system redundancy by paralleling power supplies. Power schottky diodes are
    used in automotive power system design to provide protection from reverse battery conditions and protect
    from various automotive electrical transients. Industrial systems traditionally have employed schottky diodes to
    provide reverse polarity protection from field power supply mis-wiring and provide immunity from lightning and
    industrial surges.Commonly used industrial systems, telecommunication servers, storage, and infrastructure equipments employ
    schottky diodes to provide system redundancy or increase power capacity by ORing two or more power sources.
    However, the forward voltage drop of the schottky diodes results in significant power loss at high currents and
    increases the need for thermal management using heat sinks and a larger PCB space. Forward conduction loss
    and associated thermal management reduces efficiency and increases system cost and space. With increasing
    system power levels and need for improved power density, schottky diodes are not preferred for newer high
    performance system designs.

    Reply
  13. Tomi Engdahl says:

    EEVblog 1438 – The TOP 5 Jellybean Regulators & References
    https://www.youtube.com/watch?v=YHRxvUqy3Uw

    Dave looks at his TOP 5 (plus change) Jellybean Voltage Regulators and References, and explains why you need to know them.

    Reply
  14. Tomi Engdahl says:

    Making the Case for Conductive Elastomer and Form-in-Place EMI Gasket Materials
    Nov. 10, 2021
    Use of electrically conductive gaskets with ENIG plated circuit boards has prompted questions from design and application engineers about corrosion that may occur when these gaskets come into contact with ENIG boards.
    https://www.electronicdesign.com/industrial-automation/article/21179241/parker-chomerics-making-the-case-for-conductive-elastomer-and-forminplace-emi-gasket-materials?utm_source=EG%20ED%20Auto%20Electronics&utm_medium=email&utm_campaign=CPS211110032&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  15. Tomi Engdahl says:

    This component can control tons of circuits! Digital Potentiometer Guide! EB#51
    https://www.youtube.com/watch?v=uezoQ5fkixY

    In this episode of electronics basics we will be having a look at digital potentiometers. You can use them to control any circuit digitally by replacing their mechanical potentiometers with them. But there can be pitfalls when trying to simply replacing the potentiometer. That is why I will tell you all about digital potentiometers which includes how to control them, what kind of current and voltage they can handle and how to properly use them. Let’s get started!

    0:00 Where Digital Potentiometers can be used!
    1:39 Intro
    2:14 X9C103 Overview
    4:22 Digital Potentiometer Functional Principle
    5:43 X9C103 Practical Test
    6:42 Voltage Converter Digital Pot Problem
    8:39 High Voltage Digital Pot solves the problem
    9:49 Final Test & Verdict

    Reply
  16. Tomi Engdahl says:

    Homemade Injection Transformer for PSU Loop Analysis
    https://adilmalikn.wordpress.com/2019/07/07/homemade-inject-transformer-for-psu-loop-analysis/

    Recently, I have been designing some SMPS and required some hardware to measure the actual loop response of the complete converters. People familiar with this area will probably know this can be done breaking the feedback loop of the converter and injecting a small AC signal and measuring the loop response at the output of the converter. However, such a measurement requires a mechanism to inject this signal differential across a small resistor inline with the normal feedback network. Unfortunately, as most signal generators are ground referenced we need special hardware to convert this output to a floating output.

    Commercial PSU analysers come with expensive injection transformers that allow us to do that. These transformers are designed to have a very flat response in the region of conventional loop bandwidths of SMPS converters, these range from a few Hz to upto a few MHz.

    For example this transformer for the Bode-100 costs $500!

    The reason these transformers are so expensive is the use of exotic cores that result in high inductance with minimum turns. This way the low frequency behaviour of the transformer is improved without degrading the high frequency. Simply speaking, we need to add more turns to the transformer to improve low frequency behaviour, but the increased parasitic capacitance then degrades the high frequency behaviour.

    I experimented with a few DIY transformers by purchasing some cheap £10 cores from RS. I wound around 5m of differential cabling scavenged from an old Ethernet cable.

    The results are surprisingly flat, and both transformers work well from about 10 Hz upto 5 MHz, and should be usable upto 10 MHz. Not bad for £10!

    Make your own insertion transformer for measuring loop gain-phase of power converters
    http://www.simprojects.nl/images/DIY_signal_injection_transformer.pdf

    Reply
  17. Tomi Engdahl says:

    Topic: EEVblog #1104 – Omicron Labs Bode 100 Teardown (Read 65558 times)
    https://www.eevblog.com/forum/blog/eevblog-1104-omicron-labs-bode-100-teardown/

    Teardown on the Omicron Labs Bode 100 Frequency Response Analyser / Vector Network Analyser
    https://www.youtube.com/watch?v=IpI-cGU6-FY

    Reply
  18. Tomi Engdahl says:

    https://www.eevblog.com/forum/blog/eevblog-1104-omicron-labs-bode-100-teardown/

    I tried to make a modest homebrew version of this and the best solution I found for injection transformers were current transformers for AC current measurement where I added some primary windings:

    https://electronicprojectsforfun.wordpress.com/injection-transformers/

    You have to be cautious with frequency ranges advertised; these are -3dB values, and phase shift at the band corners can be too much for meaningful measurements.
    Another issue is the capacitance between primary and secondary. This could be way above 100pF due to the bifilar winding technique, maybe too much for some sensible circuits.

    Reply
  19. Tomi Engdahl says:

    http://www.richieburnett.co.uk/temp/gdt/gdt1.html
    I think the real trick is in the brown ferrite core itself, the colours denote frequency/saturation properties, I have heaps of rings but not any brown ones which I assume are RF ones.

    if I know how to count, in the previous video we can see the impedance, 400Ω @ 300Hz means 210mH, that’s AL = 140µH/N^2
    I estimated the size of the core, roughly a T184 core, height 18mm, outer diameter 47mm, inner diameter 25mm means a permeability of about 60000, seems like a lot but I was expecting something like that, small signal audio transformer use that kind of core permeability, low turn count low freq was asking for that, now let’s look for a brown core with tens of thousands for µr… there are not that many materials in that range…
    I would bet it’s nanoperm https://www.magnetec.de/en/nanopermr-products/, it’s the closer one I found.
    Here are some products, http://www.feryster.com/polski/nanoperm.php?lang=en

    Reply
  20. Tomi Engdahl says:

    Inductance values for various designs
    http://www.richieburnett.co.uk/temp/gdt/gdt1.html

    The pictures below show various different pulse transformers that were tested. The core type and winding method are listed along with the measured inductances.

    Reply
  21. Tomi Engdahl says:

    Which Capacitor Do I Use? Tech Tips Tuesday
    https://www.youtube.com/watch?v=67M7fsbLUIU

    How to choose the correct capacitor for your circuit. See how temperature affects the capacitance of different capacitors.

    Reply
  22. Tomi Engdahl says:

    Why do capacitors sound different?
    https://www.youtube.com/watch?v=mCk50RTtrT0

    When audio signals pass through a capacitor they sound different depending on which kind of capacitor is in use. Why? And, for that matter, what is a capacitor and how does it work?

    Reply
  23. Tomi Engdahl says:

    https://www.hackatronic.com/precision-rectifier-circuit-using-opamp-working-and-applications/
    The precision rectifier is a type of rectifier that converts the AC signal to DC without any loss of signal voltage. In a precision rectifier circuit using opamp, the voltage drop across the diode is compensated by the opamp. In a Diode voltage drop is around 0.6V or 0.7V. Also, this circuit can be made to have some gain at the output

    Reply
  24. Tomi Engdahl says:

    Hi-Fi Phono Preamp (RIAA Equalisation)
    © 1999, Rod Elliott – ESP (Original Design)

    https://sound-au.com/project06.htm

    Reply
  25. Tomi Engdahl says:

    Noise of a Non-inverting Operational Amplifier Circuit
    https://m.youtube.com/watch?v=W0vfALQ_n54&feature=youtu.be

    http://www.analog.com/amplifiers Analog Devices’ Matt Duff calculates the total noise of a non-inverting Operational Amplifier (Op Amp) circuit. The noise sources are: amplifier voltage noise, amplifier current noise, and resistor noise.

    Reply
  26. Tomi Engdahl says:

    Generally it is the paper, wax, and electrolytic capacitors that problems occur with over time.

    mica rarely go bad or change value over time.

    Reply
  27. Tomi Engdahl says:

    Either Mica or ceramic. Most likely all perfectly fine. Probably one of the most reliable component types ever made.

    There can be Silver mica disease in IF cans in old Radio Recievers and the likes.

    Older resistors drift. Other caps die and drift.

    Wires can fray and mold in nasty storage situations.

    Diodes can open up instantly with no indication of it happening. Same for transistors. If something happens on power or reverse bias fault.

    Resistors and diodes always seem to die.

    Transistors and diodes can often die also short circuit. That can fry nearby components also like resistors.

    Reply
  28. Tomi Engdahl says:

    Is GaN Replacing Silicon as the Mainstream Computing Power Solution?
    Nov. 19, 2021
    The emergence of Gallium Nitride (GaN) is changing the way designers think about their power electronics designs. We talked to Dan Kinzer at Navitas to get a handle on the situation.
    https://www.mwrf.com/techxchange/talks/video/21181808/is-gan-replacing-silicon-as-the-mainstream-computing-power-solution?utm_source=RF%20MWRF%20Today&utm_medium=email&utm_campaign=CPS211119076&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  29. Tomi Engdahl says:

    Document 1510 Revised 10/17/18Technical Bulletin
    Transformer Solutions for Ultrasonic Sensing
    https://www.coilcraft.com/getmedia/3618528f-51b3-40f2-864a-7b460524cebd/Doc1510_Ultrasonic_Sensing.pdf

    Reply
  30. Tomi Engdahl says:

    The Path to Commercializing Flexible Hybrid Electronics
    Nov. 29, 2021
    This article explores the steps taken to commercializing flexible hybrid electronics, including an example of an FHE solution that has already come on to the market.
    https://www.electronicdesign.com/industrial-automation/article/21182374/nextflex-the-path-to-commercializing-flexible-hybrid-electronics?utm_source=EG%20ED%20Analog%20%26%20Power%20Source&utm_medium=email&utm_campaign=CPS211117051&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  31. Tomi Engdahl says:

    DOUBLEDIFFAMP – ONBOARD GUITAR PREAMP
    https://analogworkshop.eu/products/doublediffamp/

    The DoubleDiffAmp is a simple guitar preamp built around a low-noise op-amp that operates in a differential amplifier configuration. It is a two-channel version of the DiffAmp preamplifier – one preamplifier can handle two pickups.

    The DoubleDiffAmp plugs directly into the humbucker pickup. With this configuration, the DoubleDiffAmp amplifies the differential signal from the pickup’s coils and at the same time suppresses the common signal (hum).

    Reply
  32. Tomi Engdahl says:

    How to Use Integrated GaN Switches for High Efficiency, Cost-Effective Offline Power Supplies
    https://www.digikey.com/en/articles/how-to-use-integrated-gan-switches-for-offline-power-supplies?dclid=CIjx14Oc0fQCFc3gGAodczEBvw

    The range of applications for compact 100-watt power supplies continues to increase, from AC-DC chargers and adapters, USB power delivery (PD) chargers, and quick charge (QC) adapters, to LED lighting, white goods, motor drives, smart meters, and industrial systems. For designers of these offline flyback power supplies, the challenge is to ensure robustness and reliability, while at the same time continuing to lower cost, improve efficiency, and reduce the form factor for higher power density.

    To address many of these issues, designers can replace silicon (Si) power switches with devices based on wide bandgap (WBG) technologies such as gallium nitride (GaN). Doing so translates directly to improved power supply efficiency and reduced need for heatsinking, enabling higher power density. However, compared to Si, GaN switches are more difficult to drive.

    Designers can overcome the issues associated with fast switching speeds, such as stray inductance and capacitance and high-frequency oscillations, but doing so takes added development time and cost. Instead, designers can turn to highly integrated offline flyback switcher ICs with internal GaN power devices.

    This article briefly discusses the advantages of GaN and its design challenges. It then introduces three integrated offline flyback switcher IC platforms with internal GaN power switches from Power Integrations and shows how they can be used to produce high-efficiency power converter designs. Complementary MinE-CAP bulk capacitor miniaturization and inrush management ICs are discussed, as well as a useful online design environment.

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*