Electrical car charging cables

There is a growing interest and investment in electric vehicles infrastructure. To change those electric vehicles here are many different options how this can be done – with different benefits and disadvantages. The charging time depends on the battery capacity and the charging power. The charging power depends on the power available from the power source, the capabilities of your car and how your car is connected to the power source. There are also many different connectors in use (in both power outlets and in the car end). One of the disadvantages are that there are many options that can confuse users.

How does an Electric Car work ? | Tesla Model S

The simplest options that many people choose is to charge their electric vehicles from a domestic socket typically plug your car in overnight. Some electric vehicles have converters on board that can plug directly into a standard electrical outlet or they can be plugged to standard outlet with a special cable that has some active electronics in it (setting allowed load current and provide protection functions). Charging an electric vehicle is pretty easy if your car supports that option – just plug it in and wait.

Many people choose to charge their electric vehicles from a domestic socket typically plug your car in overnight (it can take all night to charge your car battery from empty to full). As a short-term or occasional solution, charging from the mains is fine. In longer term use, the problems are that that charging is slow that in some cases the old domestic outlets might not be able to properly handle the long term high current load the electrical car charging causes.

Another option is that you can charge your car at a public charging station or at home via a domestic socket or a specially installed charging point. You can charge your car much faster if you install a specially-designed charging point. Home chargers (typically 16-amps or 32-amps) can charge an electric vehicle from flat to full in 3.5 hours. Some are even quicker. The price of chargers depends on their power and efficiency. Typically you will use a charging station that provides electrical conversion, monitoring, or safety functionality.

Electric Car Charging, How long does it REALLY take?

Charging Your EV at Home

There is also a wide variety of electrical vehicle charging stations. An electric vehicle charging station is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles—including electric cars, neighborhood electric vehicles and plug-in hybrids. Charging station is usually accessible to multiple electric vehicles and has additional current or connection sensing mechanisms to disconnect the power when the EV is not charging.

Charging stations fall into four basic categories:
1. Residential charging stations: An EV owner plugs into a standard receptacle when he or she returns home, and the car recharges overnight.
2. Charging while parked (including public charging stations) – a private or commercial venture for a fee or free, sometimes offered in partnership with the owners of the parking lot. This charging may be slow or high speed.
3. Fast charging at public charging stations >40 kW, capable of delivering over 60-mile (97 km) of range in 10–30 minutes.
4. Battery swaps or charges in under 15 minutes.

The charging time depends on the battery capacity and the charging power. The charging power depends on the voltage handling of the batteries and charger electronics in the car. The U.S.-based SAE International defines Level 1 (household 120V AC) as the slowest, Level 2 (upgraded household 240 VAC) in the middle and Level 3 (super charging, 480V DC or higher) as the fastest.

In Europe where 230V AC is used, the Level 2 type of charging is most commonly used. For normal charging (up to 7.4 kW), car manufacturers have typically built a battery charger into the car. A charging cable is used to connect it to the electrical network to supply 230 volt AC current. The charging cable can have active electronics in it to provide car the information how much current it can draw from outlet and some protective electronics (ground fault protector, over current protector, connector over-heating protection etc.). The Type 2 connector is suitable for slow, fast and rapid charging.

For quicker charging (22 kW, even 43 kW and more), manufacturers have chosen two solutions:
1. Use the vehicle’s built-in charger, designed to charge from 3 to 43 kW at 230 V single-phase or 400 V three-phase.
2. Use an external charger, which converts AC current into DC current and charges the vehicle at 50 kW (e.g. Nissan Leaf) or more (e.g. 120-135 kW Tesla Model S).

Different charging modes:

Mode 1: Domestic socket and extension cord. The vehicle is connected to the power grid through standard socket-outlets present in residences, which depending on the country are usually rated at around 10 A. You are merely connecting a car to the mains using a wire, with no method of controlling current/voltage drawn or utilizing any extra safety features. The the electrical installation must comply with the safety regulations and must have an earthing system, a circuit breaker to protect against overload and an earth leakage protection. This is nowadays very rarely used option.

Mode 2: Domestic socket and cable with a protection device. Mode 2 cables build upon Mode 1 to provide more safety and control. The vehicle is typically still connected to the main power grid via normal household socket-outlets. Charging can be done via a single-phase or three-phase network. A protection device is built into the cable. They feature some inline circuitry to help communicate with the car and dictate how much current is being pumped into the battery pack – they try to set charging current to match the capabilities of the car and the electrical outlet type used for charging. Typical protective functionality provided are ground fault protection, current sensors which monitor the power consumed (maintain the connection only if the demand is within a predetermined range) and additional physical “sensor wires” which provide a feedback signal (SAE J1772 and IEC 62196 schemes).

Mode 3: Specific socket on a dedicated circuit. The vehicle is connected directly to the electrical network via specific socket and plug and a dedicated circuit. A control and protection function is also installed permanently in the installation. Mode 3 is when things start to get clever, allowing the car and charging point to talk to one another. What this means is that electric cars can instruct the charging point to turn off the power when the battery is fully charged and also allow the car to evaluate a charging point’s capacity – changing the speed with which the car will be charged. Typically, these are wall-box type units.

Mode 4: Direct current (DC) connection for fast recharging. The electric vehicle is connected to the main power grid through an external charger. Control and protection functions and the vehicle charging cable are installed permanently in the installation.

Electric Vehicle Charging – Part 1/2

Electric Vehicle Charging – Part 2/2

Cables and connectors for electronics vehicle charging can be confusing. There are many connector and cable types. Electric car charging cables aren’t as simple as you may expect. Not only are there multiple types of plugs and connectors but there are different modes of operation, too. Modes of operation are a little different to plug/connector design, as they affect what these are capable of. There is no set world-wide standard for all car makers to follow.

Charging cable and plug types article gives an overview of all relevant charging cable and plug types for electric mobility. Using the right combination of cables for your EV is needed to charge it properly and quickly.

Put simply, an electric car charging cable is made up of three parts: a connector which plugs into your car, a length of wire and another plug which connects into a power source. That’s applies to most of the charging cable except type 2. Those wire only cables do without any electronics or rely on larger electronics at both ends of the cable, such as a wall-box.

There are two types of charging cables for electric cars: The mode 2 charging cable and the mode 3 charging cable. The mode 2 charging cable that fits into any standard domestic socket. The mode 3 charging cable is the connection cable between the electric car and the charging station.

The mode 2 charging cable is on that is the one that usually delivered with the vehicle ex works and fits into any standard domestic socket.
Mode 2 charging uses a cable that has circuitry in between both ends of the cable. Communication between the charging connection and the electric car takes place via a box which, which acts as intermediary between the vehicle and the connection plug (ICCB, in-cable control box). In case of charging from normal mains plug, the box on the type 2 cable tells the car how much current it can take from the mains outlet and tries to disconnect mains power to car if something seems to be going wrong.

Having many types of different connectors in electrical vehicles can be a problem for users. The EU realiszed this and back in 2014 brought into effect legislation that stated all new plug-in vehicles and charging points must include a ‘Type 2′ charging connector. The IEC 62196 Type 2 connector (commonly referred to as mennekes) is used for charging electric cars within Europe. The connector is circular in shape, with a flattened top edge and originally specified for charging battery electric vehicles at 3–50 kilowatts. Electric power is provided as single-phase or three-phase alternating current (AC), or direct current (DC).

The connector contains seven contact places: two small and five larger. Two small contacts are used for communications. Communication takes place over the signalling pins between the charger, cable, and vehicle to ensure that the highest common denominator of voltage and current is selected. The large pins are used for power and ground connections somewhat differently depending on the charging mode.

Although an EU-wide agreement regarding a universal plug system exists, there are still some points to note if you are thinking of purchasing an electric car. For example, you will need the right charging cable if you want to charge your e-vehicle at home or at public charging points.

Types of Electric Car Charging Cables

Type 2 (Mode 3) cable explained

Charging Adapters

You might be interested to see what is inside those charging stations and charging cables. Here are videos to see what is inside different electrical car charging systems.

Inside an electric vehicle charger interface.

Delta Energy Systems 3.3kw Ev Charger teardown

eFIXX – Teardown – Whats inside a ROLEC Wallpod electric vehicle charger? (Rolec EV Charger)

Chinese Level 2 EV charger tear down

“Amazing-E EVSE” – Review and Look Inside

Aliexpress 32A (7kW) portable EV chargers ( EVSE ) Zencar, Khons

Ohme smart EV charging cable ( EVSE )


  1. Tomi Engdahl says:

    High-voltage technologies are key to empowering a more sustainable future

    As electrification becomes more common, semiconductor innovations enable us to interact with electric vehicles, renewable energy sources and other high-voltage systems safely and reliably

  2. Tomi Engdahl says:

    Soft-Switching Helps EV Inverters Run Farther, Faster, and Cooler
    May 22, 2023
    Advanced switching technologies can help WBG-based EV traction inverters deliver more power with dramatically lower losses.

  3. Tomi Engdahl says:

    Super Schuko 16A – turvalliseen sähköauton lataukseen

    Super suko sähköauton latauspistorasia läppäkannella

    Sähköauton tai plug-in hybridi auton turvalliseen suko lataukseen.​ Lataukseen tarkoitettu Super Schuko pistorasia kestää jatkuvaa 16A virtaa. Super Suko pistorasia voidaan vaihtaa olemassa olevan autolämmityspistorasian tilalle. Näin ei tarvitse vaihtaa koko auton lämmitysrasiaa vaan pelkkä pistorasia ja säästät selvää rahaa. Voit myös upottaa Supersuko pistorasian vaikka pinta-asennuskoteloon ja saat turvallisen sähköauton latauksen esimerkiksi autotalliin.

    Super Schuko pistorasian tuotetiedot:

    Supersuko pistorasia varustettu apukoskettimella, voidaan käyttää vaikka älykoti järjestelmissä

    Super Schuko 16A 250V + sulkeutuva 3A (10A) apukosketin

    Standardit ja testaukset


    DIN 62196-1 2012-11

    VDE 0620-1:2010-02


    Kotelointiluokka IP54


    Laadukkaat niklatut koskettimet ja pinnat

    Tuotteen kokotiedot

    ​Laippa 50x50mm

    Reikien väli 38x38mm

    Tavallinen pistorasia vai supersuko?

    Supersuko – hyötyä vai ei?

    Tarkkaavaiset katsojat havaitsivat, ettei aiemman videon supersukona esitelty rasia ollut virallinen supersuko, vaan “tavallinen” 16 ampeerin virtaan kykenevä rasia. Otetaan siis uusiksi, tällä videolla avataan BALSin rasia ja verrataan sitä tavalliseen. Katso videolta mitä eroja löytyy!

    Luulen että tunnistava katkaisija super-suko liittimessa on erityisesti sitä varten että irroitettaessa katkaisee sähkön, jolloin liittimeen ei tule kipinää (kun lataus on päällä, esim 16A).

    Koitappa tutkia ihan perus markettipistorasia, Opal merkkinen 1-os ip44, kupariset paksut kontaktit ruuviliittimillä. Laadukkain pistorasia isolle virralle mitä on tullut vastaan. Ei lämpene 16A virralla yhtään. 5e virolainen pistorasia

    supersuko vs normisuko

    Purin supersukorasian ja normaalin sukorasian verratakseni rakennetta. Ylättävän vähän oli eroa…

    Ne supersukon koskettimet on hopeapinnoitettu, siksi väri on hieman erilainen.

    Saahan tuolla supersukon hinnalla jonkinlaisen vakuuden tulipalon varalle. Jos vahinko sattuu niin jälkeenpäin sitä millainen pistorasia oli, on kylläkin vaikea todistaa tai todeta.

    Sähköauton lataaminen kodin pistorasiasta //Super Suko -latauspistorasia, latauslaitteen pidike ym.

    Käyn videolla läpi omia kokemuksiani ja näkemyksiäni sähköauton tai plug-in -hybridin lataamisesta kodin pistorasiasta.

    Super suko (tai super schuko) -pistorasia on tarkoitettu lataamiseen ja kestää jatkuvaa 16 ampeerin virtaa. Omassa tapauksessani Opel Amperan tarvikelaturi ottaa juuri tuon 16 ampeeria, joka on talon sähkökaapelointien ja sulakekoon puolesta maksimi.

    Tosi hyvä informatiivinen video. Varmasti on paljon ihmisiä, jotka eivät latureista mitään ymmärrä ja ostaneet 600-800e laturin kotilataukseen aivan turhaan. Meilläkin on taloyhtiössä pelkkiä 3.6kW latausmahdollisuuksia niin ei siihen mitään tonnin toosaa tarvi.

    3,6 kW riittänee hybiridille, mutta täyssähkölle hieman nihkeä varsinkin jos välillä joutuu ajamaan hieman pidemmälle niin ei ehdi yöllä lataamaan riittävästi.

  4. Tomi Engdahl says:

    “IEC:n standardin 60884-1 päivitys tunnetaan työnimellä super-schuko/high load profile plugs. Uusi pistoketyyppi saattaa tuoda helpotusta myös sähköautojen lataukseen, sillä tavallinen suko-pistoke sopii suoraan uuteen pistorasiaan, mutta pistorasian vahvistettu rakenne mahdollistaa nykyistä suuremman kuormituksen.
    Siinä missä nykyisten sukojen (CEE 7/7) lämpeneminen on testattu ja standardisoitu kestämään kahdeksan ampeerin jatkuva kuormitus ja tunnin hetkellinen kuormitus 22 ampeerin virralla, pitäisi uuden version kestää jatkuva 16 ampeerin kuormitus ja viiden tunnin kuormitus 26 ampeerin virralla.”

  5. Tomi Engdahl says:

    An Introduction to the SAE J1772 and CCS EV Charging Interfaces
    June 14, 2023
    Here’s a field guide to the SAE J1772 EV charging interface, and its dc-capable relative, the Combined Charging System (CCS).

    What you’ll learn:

    The functional capabilities of the SAE J1772 Type 1/2 EV charging interface.
    How the Combined Charging System (CCS) specification adds dc fast-charge capabilities to the J1772 system.
    The signaling and control protocols that support J1772 and CCS interfaces.

    The broad adoption of electric vehicles (EVs) depends as nearly as much on the driver’s ability to conveniently access public charging stations as the cost and quality of the vehicles themselves. The success of public networks, in turn, depends on the adoption of a common charging interface that can be used by virtually any EV.

    Tesla overcame this problem by aggressively deploying its own fleet of chargers with its own proprietary interface1 throughout the U.S. Meanwhile, other EV manufacturers (and charging services) in the North American market experimented with several competing technologies before finally adopting charging interfaces based on some variant of the SAE J17722,3 standard, or its dc-capable variant, the Combined Charging System (CCS)4 (Fig. 1).

    In its latest revision, J1772 supports single-phase ac charging across a wide range of power levels, ranging from a 120-V connection provided by a 15-A household outlet (1.44 kW) to hardwired 240-V equipment that can deliver up to 19.2 kW (80 A @ 240 V). To ensure safety, the standard includes an interlock circuit that prevents the connector’s pins from being energized when they’re not mated and keeps them that way until commanded by the vehicle.

    The Proximity Pilot (PP) pin, also known as “plug present,” supports several functions. It serves to alert the vehicle’s on-board charger (OBC) to the plug’s presence and provides a signal to the vehicle’s control system so that it can inhibit drivetrain movement while connected to the charging station. It’s also connected to a switch in the connector release button that’s used to initiate a controlled shutoff prior to actual disconnection of the charge power pins when charging is finished.

    The fifth pin, known as the Control Pilot (CP), serves as a post-insertion signaling connection. It supports additional safety functions as well as two types of communications between the vehicle and the charging station. The safety mechanism includes a resistor and diode that sits between the CP and PE pins, which signals continuity by dropping the pilot voltage transmitted by the charging station from +12 to +9 V.

    Until the CP-PE circuit is active, the live wires (L1 and L2) of a public charging station remain in their default inactive state (the exception being that the standard allows for a charging current as in Mode 1, i.e., up to 16 A @ 120 V ac). Once the CP-PE loop is closed, the charging station is now able to verify that the protective earth is present, allowing the vehicle to use the resistance between the CP and PE pins to request a particular charging mode (Fig. 4).

    Once CP-PE continuity is detected, the charging station begins to transmit a variable pulse-width-modulated (PWM), 1-kHz square wave to the CP pin (±12.0 ± 0.4 V), which uses its duty cycle to inform the vehicle about the maximum charging current it can supply.

    For example, if the vehicle sees a 16% PWM signal, the charger can supply 10 A maximum, 25% PWM indicates a 16 A maximum and 50% PWM indicates that up to 32 A is available. A PE signal with 90% PWM indicates that the charger can also support dc fast charging if the vehicle is equipped with a Combined Charging System (CCS) Combo connector. The basics of CCS will be discussed in the following section.

    A Higher-Power Option

    The Combined Charging System (CCS) Combo interface (Types 1 and 2) provides support for dc fast charging by adding two additional pins to the IEC 62196 standards5,6 for Type 1 (SAE J1772) and Type 27,8 connectors. In its present version, IEC 63196 can support charging rates of up to 350 kW at voltages up to 1200 V.

    The CCS Type 1 connector (Fig. 5) is an extension of the SAE 1772 connector primarily found in North and Central America, Korea, and Taiwan.9,10 The Type 2 and Combo 2 style connectors (not discussed in this article) are primarily used in Europe, South America, South Africa, Australia, Arabia, India, Singapore, Taiwan, and Hong Kong.9 For both connector types, the two dc contacts were integrated in a manner that’s mechanically backward-compatible with regionally appropriate ac-only charging stations.

    Although there are several different types of CCS connectors, they all use the same communication protocol to negotiate and control the charging process. CCS interfaces use two basic types of communication.

    The first mode, known as Basic Signaling (BS), is the same PWM scheme transmitted over the CP contact used by J1772 ac charging systems for safety-related functions and, in the case of ac charging, to advertise the power level the available from the charging station. The only addition for the combo connector is that the station can transmit a pulse width of 5% that indicates the High Level Communication (HLC) protocol should be used.

    The HLC protocol involves transmitting a modulated high-frequency signal over the CP contact (also known as power-line communication or PLC) based on the standard DIN SPEC 70121 and the ISO/IEC 15118 standard11 that can be used to transmit digital commands and information. In addition to controlling dc charging operations, HLC can be used to support other advanced services, such as vehicle-to-grid (V2G) load sharing.

    The Inevitable Standards Battles

    As with nearly every emerging technology, EV charging hasn’t been without its growing pains. Just about the time the CCS connector was becoming the widely accepted fast-charge interface for the North American market, Tesla announced it had opened up its formerly proprietary charging standard for use by all charging network operators and vehicle manufacturers.12

    The design and specification files for the Tesla charging connector and charge port, now called the North American Charging Standard (NACS), are available are available for download. Tesla said that it’s actively working with relevant standards bodies to codify its charging connector as a public standard.


  6. Tomi Engdahl says:

    SiC Fits into the Future of Renewable Energy, DC Fast Chargers
    June 7, 2023
    Agreements are in place for onsemi to supply its SiC MOSFETs and other power devices to energy-infrastructure OEMs.

    While it’s emerging as one of the key building blocks for electric vehicles (EVs), silicon carbide (SiC) is also now playing a pivotal role in renewable energy and infrastructure that must evolve to enable a more sustainable future.

    onsemi signed a supply agreement with Kempower for SiC MOSFETs and other chips from its EliteSiC family, which will factor into the company’s future EV fast chargers. In addition, it’s supplying SiC power devices to Sineng Electric for a new series of industrial-grade solar inverters.

    Because it belongs to a class of wide-bandgap semiconductors, SiC can more efficiently distribute and convert power at the high voltage levels that have been the domain of silicon IGBTs for years.

    One of SiC’s most valuable properties is that it can handle 10X higher breakdown voltages than silicon. That helps reduce the on-resistance (RDS(on)) between the drain and source regions of the power FET when turned on, keeping conduction losses in the device to a minimum.

  7. Tomi Engdahl says:

    An Unexpected Upset In EV Charging Standards

    Last November, Tesla open-sourced parts of its charging infrastructure, not-so-humbly unveiling it as the North American Charging Standard (NACS). It’s finally taking off with a number of manufacturers signing on.

    Companies launching “standards” based on their previously proprietary technology in opposition to an established alternative usually leads to standards proliferation. However, with recent announcements from Ford, GM, and Rivian that they would begin supporting NACS in their vehicles, it seems a new dominant standard is supplanting CCS (and the all-but-dead CHAdeMO) in North America.

    As Tesla already has the most extensive charging network on the continent and has begun opening it up for other EVs, it makes sense that other marques would want to support NACS, if nothing else to satiate customer demand for a dead-simple charging experience. Dongles are annoying enough for plugging in an external monitor. Having to mess with one while handling high-power electrical connections is less than ideal, to say the least.

    If you want to add NACS to your own EV project, the standard is here. We’ve discussed some of the different standards before as well as work toward wirelessly charging EVs

    North American Charging Standard


  8. Tomi Engdahl says:


    Sähköautovalmistaja Teslan ravistelee Yhdysvaltojen latausmarkkinoita tarjoamalla NACS-pistokkeensa muidenkin toimijoiden latausasemiin. Niitä ovat ottamassa käyttöön General Motors, Ford ja sähköautovalmistaja Rivia sekä uusimpana suomalaistaustaiset sähkömoottoripyörämerkki Verge ja latauslaitevalmistaja Kempower.

    Elan Muskin Teslan päätös julkistaa sen NACS-latausstandardi on saanut viime aikoina paljon kansainvälistä huomiota, kun useat merkittävät alan toimijat. Tähän asti patentilla suojattua järjestelmää on voinut käyttää vain Teslan omien ajoneuvojen lataukseen.

    Suurten autovalmistajien lisäksi Pohjois-Amerikassa voimakkaasti laajentava lahtelainen latauslaitevalmistaja Kempower on ottamassa alueella käyttöön Teslan NACS-standardin alueen laitetoimituksissaan. Uusimpana suomalaistaustainen Verge Motorcycles on kertonut ottavansa Teslan NACS-standardin käyttöönsä.

  9. Tomi Engdahl says:

    OP-Pohjolan sähköautoilijoita (ja etenkin taloyhtiöparlamentteja) hämmentänyt suojeluohje on korjattu

  10. Tomi Engdahl says:
  11. Tomi Engdahl says:

    Kaappaako Teslan liitin sähköautojen latausmarkkinat?

    Teslan sähköautoilleen kehittämän Magic Dock -liittimen nimi vaihtui viime marraskuussa NACS-liittimeksi (North American Charging Standard) ja samalla suljettu liitin avattiin muiden valmistajien käyttöön. Tämän jälkeen moni valmistaja on ryhtynyt tukemaan tekniikkaa, uusimpana suomalainen sähkömoottoripyörien valmistaja Verge.

    Loppuvuoden aikana Yhdysvaltojen myyntinsä aloittava Verge Motorcycles liittyy nimekkäiden autojättien General Motorsin ja Fordin joukkoon ilmoittaessaan aikeistaan hyödyntää Teslan NACS-latausverkostoa. Tähän asti patentilla suojattua järjestelmää on voinut käyttää vain Teslan omien ajoneuvojen lataukseen.

    Toissa viikolla Electrify America -latausverkosto ilmoitti lisäävänsä NACS-pistokkeet latausasemilleen. Tämä on iso virtsanpylväs, koska verkko on Volkswagenin omistama. Viimeisen kuukauden aikana Ford, GM, Rivian, Volvo ja Polestar ovat kaikki sanoneet vaihtavansa NACS:ään. Jäljelle jäävät Volkswagen, Hyundai, Stellantis, Lucid, Toyota ja Nissan.

  12. Tomi Engdahl says:


    ”Sähkö on tuoretavaraa ja sitä pitäisi mieluusti käyttää silloin, kun sitä sitä on paljon ja se on halpaa”, sanoo Oumanin toimitusjohtaja Matti Lipsanen Helsingin Sanomien jutussa.

    Puheena on Matin sähköauton lataaminen. Matti hoitaa homman Oumanin kehittämän Evesta Caladrius S-kytkimen avulla. Laitteen avulla voi optimoida auton latauksen niin, että lataus tapahtuu aina automaattisesti pörssisähkön halvimpien tuntien aikana.

    Artikkelissa Matti kertoo sähkönkäytön ajoittamisen hyödyistä kuluttajalle ja yhteiskunnalle.

    ”Tälle on koko Euroopan laajuinen tarve ja markkina, joka syntyy tällä hetkellä. On meistä itsestä kiinni, millä tavalla pystymme konseptoimaan tämän ymmärrettäväksi ja helposti asennettavaksi. Tästä syntyy merkittävää liiketoimintaa.”

    HS-juttu on maksumuurin takana ja löytyy täältä: https://www.hs.fi/kotimaa/turku/art-2000009678917.html

  13. Tomi Engdahl says:

    Smart car chargers. Plug-n-play for hackers?

    Over the last 18 months, we’ve been investigating the security of smart electric vehicle chargers. These allow the owner to remotely monitor and manage the charge state, speed and timing of their car charger, among many functions. We bought 6 different brands of chargers and also reviewed security of some public charging networks.

  14. Tomi Engdahl says:

    Power Electronics Cultivate a Second Life for Ex-EV Batteries
    July 6, 2023
    A modular multilevel inverter maximizes the power output of batteries that have aged out of electric vehicles.

  15. Tomi Engdahl says:

    Insulation monitoring in high voltage EV charging and solar energy designs

    This demo features an electric bridge DC insulation monitoring (DC-IM) method which allows an accurate symmetrical and asymmetrical insulation leakage detection mechanism and an isolation resistance detection mechanism. A new generation of isolated amplifiers and switchers that enable isolation without an external supply on the hot side while the MCU powers the isolation device from the cold side.

  16. Tomi Engdahl says:

    An Introduction to the SAE J1772 and CCS EV Charging Interfaces
    July 5, 2023
    Here’s a field guide to the SAE J1772 EV charging interface, and its dc-capable relative, the Combined Charging System (CCS).

  17. Tomi Engdahl says:


    Zaptecin patentoidulla vaihetasapainotusmenetelmällä voidaan hyödyntää olemassa olevasta kapasiteetista jopa yli 95 prosenttia! Mutta mitä tarkoittaa vaihetasapainotus ja miten se liittyy sähköautojen lataukseen?

    Zaptecin pilvessä toimiva kuormanhallinta perustuu vaiheiden tasapainottamiseen. Järjestelmä vaihtaa auton latausta vaiheittain koko lataussession ajan riippuen vaiheiden kuormituksesta. Tämä minimoi kolmivaihejärjestelmän vinokuorman. Vinokuorma viittaa tilanteeseen, jossa kuormitus jakautuu epätasaisesti kolmivaihejärjestelmän eri vaiheiden välillä, luoden epäsymmetristä kuormitusta. Sähköauton latausjärjestelmät kuormittavat yleensä vaiheita epätasaisesti suurilla tehoilla ja pitkäkestoisesti, mikä saattaa johtaa ylimitoitettuihin järjestelmiin. Tämä ei kuitenkaan päde Zaptecin tapauksessa.

    Zaptec sai patentin latausteknologialle vuonna 2023
    Zaptecille on myönnetty patentti vaihetasapainottamisen teknologialle, ja nyt sen latausinnovaatio on virallisesti suojattu. Patentti tekee norjalaisesta älykkään virrankäytön teknologiasta ainutlaatuisen.

  18. Tomi Engdahl says:

    The vehicle-to-grid vision: unleashing the power of electric vehicles

    Enabled by semiconductor technology, vehicle-to-grid (V2G) bidirectional charging can provide battery power to reinforce electric grids during peak demand and power your home when electricity is expensive or out

    Aging electric grids face unprecedented demand around the world and the strain may only grow with vehicle electrification. But what if electric vehicles (EVs) could ease the burden by returning power to the grid?

    The concept — known as vehicle-to-grid, or V2G — envisions fleets of EVs providing battery power to reinforce electric grids, particularly during peak demand. The vision is gaining traction as new charging and battery-storage solutions emerge and proven technologies are redeployed.

    It is also driven by environmental goals as countries strive to reduce emissions and increase renewable energy sources. While vehicle electrification is part of that journey, managing the power demands of millions of EV owners will be a challenge. The energy required to drive the average EV 100 miles is about the same amount needed to power the average home each day. If everyone charges up at the same time, grids could face serious stress.

    “The problem is not the overall capacity of the grid,” said Henrik Mannesson, our company’s general manager for grid infrastructure. “It is the peak capacity of the grid that is the challenge. We all know these peaks are getting higher and coming more often as we grow more reliant on power. Extreme weather events add more strain on the grid. With semiconductor technology, V2G bidirectional charging could smooth out these peaks, which would benefit us all.”

    Semiconductor technologies that enable bidirectional charging can turn EVs and their batteries into energy storage systems that can return power to the grid when required. Wide-bandgap power management, sensing and connectivity technologies can ensure a more reliable, smarter and safer grid by optimizing power load management, potentially paving the way for the expansion of renewable energy sources.

  19. Tomi Engdahl says:

    Sähköautojen latauslaitteiden myynti palasi normaalitasolle

    Kiinteistöihin asennettavia sähköautojen latauslaitteita myytiin vuoden ensimmäisellä puoliskolla 15 391 kappaletta, mikä on 23 prosenttia vähemmän kuin vuotta aiemmin. Laitemyynti on nyt samalla tasolla kuin vuonna 2021.

    - Latauslaitteiden myynnin kasvu näyttää palanneen normaalitasolle.

    Kun alkuvuonna 2023 on rekisteröity jo enemmän sähköautoja kuin koko edellisvuoden aikana, on selvää, että kattavaa latausinfraa tarvitaan. Toimiala odottaa budjettiriihestä lisäpanostusta ARA-tukiin, joita taloyhtiöt voivat hyödyntää lataushankkeittensa toteuttamisessa.

    - On ymmärrettävää, että nyt energiatehokkuushankkeita puntaroidaan nyt saavutettavissa olevien säästöjen kannalta ja tavoitellaan hillitseviä vaikutuksia yhtiövastikkeisiin.

  20. Tomi Engdahl says:

    Is the Time Right for Dynamic Wireless EV Charging?
    Aug. 17, 2023
    Dynamic wireless charging could revolutionize transportation and accelerate the switch to electric mobility by using copper coils fitted under the asphalt, enabling EVs to charge their batteries while on the move

  21. Tomi Engdahl says:

    Gartner: vuonna 2027 sähköauto maksaa saman verran kuin polttomoottoriauto

    Tutkimuslaitos Gartnerin analyytikot odottavat, että vuoteen 2027 mennessä täyssähköisten ajoneuvojen keskihinta on samalla tasolla kuin kooltaan ja muilta ominaisuuksiltaan vastaavan polttomoottorilla varustetun uuden auton hinta. Tämä tulee nopeuttamaan sähköautojen maailmanlaajuista käyttöönottoa.

    Vuoteen 2030 mennessä sähköntuotanto ja verkkokapasiteetti voivat kuitenkin toimia esteinä sähköajoneuvojen massakäyttöön hinnasta riippumatta. – Elleivät maat ryhdy toimiin kannustaakseen sähköajoneuvojen kuljettajia lataamaan autonsa öiseen aikaan, sähköautoihin siirtyminen voi aiheuttaa lisärasitusta sekä sähkön tuotantokapasiteetille että jakeluverkoille, arvioi analyytikko Jonathan Davenport.

    Gartner arvioi, että tänä vuonna sähköautoja – täyssähköisiä ja ladattavia hybridejä – myydään globaalisti lähes 15 miljoonaa kappaletta. Kun ennuste autojen kokonaismarkkinoista on 86-87 miljoonaa, tarkoittaa tämä, että lähes joka viides uusi auto kulkee sähköllä.

    Gartner arvioi nyt, että vuonna 2030 yli 50 prosenttia myydyistä autoista kulkee sähköllä.

  22. Tomi Engdahl says:

    The vehicle-to-grid vision: unleashing the power of electric vehicles

    Enabled by semiconductor technology, vehicle-to-grid (V2G) bidirectional charging can provide battery power to reinforce electric grids during peak demand and power your home when electricity is expensive or out


Leave a Comment

Your email address will not be published. Required fields are marked *