Electrical car charging cables

There is a growing interest and investment in electric vehicles infrastructure. To change those electric vehicles here are many different options how this can be done – with different benefits and disadvantages. The charging time depends on the battery capacity and the charging power. The charging power depends on the power available from the power source, the capabilities of your car and how your car is connected to the power source. There are also many different connectors in use (in both power outlets and in the car end). One of the disadvantages are that there are many options that can confuse users.

How does an Electric Car work ? | Tesla Model S

The simplest options that many people choose is to charge their electric vehicles from a domestic socket typically plug your car in overnight. Some electric vehicles have converters on board that can plug directly into a standard electrical outlet or they can be plugged to standard outlet with a special cable that has some active electronics in it (setting allowed load current and provide protection functions). Charging an electric vehicle is pretty easy if your car supports that option – just plug it in and wait.

Many people choose to charge their electric vehicles from a domestic socket typically plug your car in overnight (it can take all night to charge your car battery from empty to full). As a short-term or occasional solution, charging from the mains is fine. In longer term use, the problems are that that charging is slow that in some cases the old domestic outlets might not be able to properly handle the long term high current load the electrical car charging causes.

Another option is that you can charge your car at a public charging station or at home via a domestic socket or a specially installed charging point. You can charge your car much faster if you install a specially-designed charging point. Home chargers (typically 16-amps or 32-amps) can charge an electric vehicle from flat to full in 3.5 hours. Some are even quicker. The price of chargers depends on their power and efficiency. Typically you will use a charging station that provides electrical conversion, monitoring, or safety functionality.

Electric Car Charging, How long does it REALLY take?

Charging Your EV at Home

There is also a wide variety of electrical vehicle charging stations. An electric vehicle charging station is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles—including electric cars, neighborhood electric vehicles and plug-in hybrids. Charging station is usually accessible to multiple electric vehicles and has additional current or connection sensing mechanisms to disconnect the power when the EV is not charging.

Charging stations fall into four basic categories:
1. Residential charging stations: An EV owner plugs into a standard receptacle when he or she returns home, and the car recharges overnight.
2. Charging while parked (including public charging stations) – a private or commercial venture for a fee or free, sometimes offered in partnership with the owners of the parking lot. This charging may be slow or high speed.
3. Fast charging at public charging stations >40 kW, capable of delivering over 60-mile (97 km) of range in 10–30 minutes.
4. Battery swaps or charges in under 15 minutes.

The charging time depends on the battery capacity and the charging power. The charging power depends on the voltage handling of the batteries and charger electronics in the car. The U.S.-based SAE International defines Level 1 (household 120V AC) as the slowest, Level 2 (upgraded household 240 VAC) in the middle and Level 3 (super charging, 480V DC or higher) as the fastest.

In Europe where 230V AC is used, the Level 2 type of charging is most commonly used. For normal charging (up to 7.4 kW), car manufacturers have typically built a battery charger into the car. A charging cable is used to connect it to the electrical network to supply 230 volt AC current. The charging cable can have active electronics in it to provide car the information how much current it can draw from outlet and some protective electronics (ground fault protector, over current protector, connector over-heating protection etc.). The Type 2 connector is suitable for slow, fast and rapid charging.

For quicker charging (22 kW, even 43 kW and more), manufacturers have chosen two solutions:
1. Use the vehicle’s built-in charger, designed to charge from 3 to 43 kW at 230 V single-phase or 400 V three-phase.
2. Use an external charger, which converts AC current into DC current and charges the vehicle at 50 kW (e.g. Nissan Leaf) or more (e.g. 120-135 kW Tesla Model S).

Different charging modes:

Mode 1: Domestic socket and extension cord. The vehicle is connected to the power grid through standard socket-outlets present in residences, which depending on the country are usually rated at around 10 A. You are merely connecting a car to the mains using a wire, with no method of controlling current/voltage drawn or utilizing any extra safety features. The the electrical installation must comply with the safety regulations and must have an earthing system, a circuit breaker to protect against overload and an earth leakage protection. This is nowadays very rarely used option.

Mode 2: Domestic socket and cable with a protection device. Mode 2 cables build upon Mode 1 to provide more safety and control. The vehicle is typically still connected to the main power grid via normal household socket-outlets. Charging can be done via a single-phase or three-phase network. A protection device is built into the cable. They feature some inline circuitry to help communicate with the car and dictate how much current is being pumped into the battery pack – they try to set charging current to match the capabilities of the car and the electrical outlet type used for charging. Typical protective functionality provided are ground fault protection, current sensors which monitor the power consumed (maintain the connection only if the demand is within a predetermined range) and additional physical “sensor wires” which provide a feedback signal (SAE J1772 and IEC 62196 schemes).

Mode 3: Specific socket on a dedicated circuit. The vehicle is connected directly to the electrical network via specific socket and plug and a dedicated circuit. A control and protection function is also installed permanently in the installation. Mode 3 is when things start to get clever, allowing the car and charging point to talk to one another. What this means is that electric cars can instruct the charging point to turn off the power when the battery is fully charged and also allow the car to evaluate a charging point’s capacity – changing the speed with which the car will be charged. Typically, these are wall-box type units.

Mode 4: Direct current (DC) connection for fast recharging. The electric vehicle is connected to the main power grid through an external charger. Control and protection functions and the vehicle charging cable are installed permanently in the installation.

Electric Vehicle Charging – Part 1/2

Electric Vehicle Charging – Part 2/2

Cables and connectors for electronics vehicle charging can be confusing. There are many connector and cable types. Electric car charging cables aren’t as simple as you may expect. Not only are there multiple types of plugs and connectors but there are different modes of operation, too. Modes of operation are a little different to plug/connector design, as they affect what these are capable of. There is no set world-wide standard for all car makers to follow.

Charging cable and plug types article gives an overview of all relevant charging cable and plug types for electric mobility. Using the right combination of cables for your EV is needed to charge it properly and quickly.

Put simply, an electric car charging cable is made up of three parts: a connector which plugs into your car, a length of wire and another plug which connects into a power source. That’s applies to most of the charging cable except type 2. Those wire only cables do without any electronics or rely on larger electronics at both ends of the cable, such as a wall-box.

There are two types of charging cables for electric cars: The mode 2 charging cable and the mode 3 charging cable. The mode 2 charging cable that fits into any standard domestic socket. The mode 3 charging cable is the connection cable between the electric car and the charging station.

The mode 2 charging cable is on that is the one that usually delivered with the vehicle ex works and fits into any standard domestic socket.
Mode 2 charging uses a cable that has circuitry in between both ends of the cable. Communication between the charging connection and the electric car takes place via a box which, which acts as intermediary between the vehicle and the connection plug (ICCB, in-cable control box). In case of charging from normal mains plug, the box on the type 2 cable tells the car how much current it can take from the mains outlet and tries to disconnect mains power to car if something seems to be going wrong.

Having many types of different connectors in electrical vehicles can be a problem for users. The EU realiszed this and back in 2014 brought into effect legislation that stated all new plug-in vehicles and charging points must include a ‘Type 2′ charging connector. The IEC 62196 Type 2 connector (commonly referred to as mennekes) is used for charging electric cars within Europe. The connector is circular in shape, with a flattened top edge and originally specified for charging battery electric vehicles at 3–50 kilowatts. Electric power is provided as single-phase or three-phase alternating current (AC), or direct current (DC).

The connector contains seven contact places: two small and five larger. Two small contacts are used for communications. Communication takes place over the signalling pins between the charger, cable, and vehicle to ensure that the highest common denominator of voltage and current is selected. The large pins are used for power and ground connections somewhat differently depending on the charging mode.

Although an EU-wide agreement regarding a universal plug system exists, there are still some points to note if you are thinking of purchasing an electric car. For example, you will need the right charging cable if you want to charge your e-vehicle at home or at public charging points.

Types of Electric Car Charging Cables

Type 2 (Mode 3) cable explained

Charging Adapters

You might be interested to see what is inside those charging stations and charging cables. Here are videos to see what is inside different electrical car charging systems.

Inside an electric vehicle charger interface.

Delta Energy Systems 3.3kw Ev Charger teardown

eFIXX – Teardown – Whats inside a ROLEC Wallpod electric vehicle charger? (Rolec EV Charger)

Chinese Level 2 EV charger tear down

“Amazing-E EVSE” – Review and Look Inside

Aliexpress 32A (7kW) portable EV chargers ( EVSE ) Zencar, Khons

Ohme smart EV charging cable ( EVSE )


  1. Tomi Engdahl says:

    High-power liquid-cooled EV charging cable

    The high-power DC charging cable uses liquid cooling technology to cool down, so that the charging cable maintains a low constant temperature during the charging process, and overcomes the thermal damage to the charging gun, charging cable, and charging pile, thereby increasing the charging current. The principle is to add a liquid cooling circulation system inside the cable, and allow the cooling system and the charging system to coexist through the sealed circulation connection inside the connector. The high-power liquid-cooled DC charging cable can fully charge or quickly charge the battery of an electric vehicle in a short time to increase the cruising range, meet customer needs, improve the utilization rate of electric vehicles, and eliminate users’ concerns.

    Reference Standard: IEC62893.4.2-2021

  2. Tomi Engdahl says:

    Liquid-to-vapor-cooled cable beats the heat for 5-minute EV charging

    A new advance leverages an alternative cooling technology to take the heat out of the charging cable, allowing it to handle the type of current needed to charge up an electric car in under five minutes.

    The rate at which an electric vehicle can be charged is guided by the current the charging cable can handle (among other factors), and with a greater current comes greater amounts of heat. Today’s solutions rely on liquid-cooling systems, like those used in computers, to prevent the wires within the cable from overheating, but these systems can’t be expanded to accommodate higher currents for fast-charging without the cable becoming cumbersome and difficult to handle.

    Scientists at Purdue University have been exploring an alternative cooling system for such applications, based on what’s known as the “flow boiling.” This sees a specialized liquid pass by a heat source and brought to a boil, generating bubbles of vapor that flow past the heat source and are then condensed back into liquid form that is recirculated continuously through the closed system.

    According to the team, which has been working on this liquid-to-vapor cooling technology for 37 years, systems that capture heat using both liquid and vapor forms are capable of removing more than 10 times more heat than systems relying solely on liquid cooling. This means the technology could be integrated into an EV charging cable with a far higher current without necessarily expanding its size.

    “The industry has a gap in knowledge and expertise needed to switch from pure liquid cooling to liquid phase change cooling,”

    Mudawar and his team worked a liquid-to-vapor thermal management system into a prototype EV charging cable, which they report can remove 24.22 kW of heat. This allowed it to handle a current of more than 2,400 amps, well above today’s state-of-the-art solutions that offer up to 520 amps and far exceeding the most widely available chargers running less than 150 amps. Based on their experiments, the scientists say the technology could charge electric vehicles in five minutes, or perhaps even less.

    “The industry doesn’t really need EVs to charge faster than five minutes, but we think we can increase the current even more by modifying both the state of the incoming liquid and the design of the cooling space around the conductor wires in the charging cable,” Mudawar says.

    The team is yet to test the technology on an actual EV, only demonstrating the cable’s potential in laboratory experiments simulating the environment of a charging station. The project is entirely forward-thinking in the sense that both the EV battery and power supply would need to also be rated to 2,500 amps for the cable to function, though the team plans to work with manufacturers to test it on EVs within two years.

    Consolidated theoretical/empirical predictive method for subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables

  3. Tomi Engdahl says:

    Hackers Are Targeting EV Charging Stations

    The growing number of EV charging stations in the U.S. and worldwide allows more drivers to easily access the convenience and eco-friendliness of driving an electric vehicle. However, there’s a major downside to these rapidly appearing EV charging stations: they are surprisingly vulnerable to cyberattacks from hackers.

    Per Automotive News, most EV hacking used to come from “white-hat” hackers—professionals electric-vehicle companies hire to test their security systems. These white-hat hackers break into systems to help manufacturers find weaknesses and fix them. But for the first time in 2021, “black-hat” hackers were the majority. These attackers operate illegally and usually are looking for ways to make money.

    The consequences of EV hacking range from inconvenient to devastating. In April, cyber attackers broke into three EV charging stations in England—but the hackers just displayed pornography on the screens. Likey, that was just a prank. However, attackers have hacked some electric cars in ways that affect the car’s abilities.

    These include decreasing the battery’s capacity, messing with headlights, disabling the brakes, or even taking control of the steering mechanism. The possibilities are scary. Typically, cybercriminals hack electric cars to hold the vehicle, or the charging station, for ransom.

    Not all hackers are looking to profit, though. In February, hackers carried out an attack against a Russian EV charging station, displaying insults and pro-Ukrainian slogans to protest the war.

    Jin Ye, an assistant professor at UGA and the director of the Intelligent Power Electronics and Electric Machines Laboratory, provides a few critical areas for automakers to focus on:

    Secure on-board diagnostics port
    Secure software updates
    Better firewall
    Penetration testing
    Reliable hardware
    Code reviews
    One way to protect your EV from hackers is to ensure that your vehicle receives all necessary and recommended software updates.

  4. Tomi Engdahl says:


    Enää ei tarvitse sähköautoilijan uskoa latausasemakaupustelijoiden pelottelua siitä, että tavallinen sukopistorasia ei kestäisi akkujen latausta. Markkinoille on nyt lanseerattu järeämpi super-suko.

    Olemassaolevia sukoja ei ole tarkoitettu jatkuvalle 16 A virralle

    Siksipä juurikin piti tehdä se supersuko.

    Työmaakeskuksiin nämä olisivat omiaan, niissä kun ei tahdo pistorasiat kestää.
    Mikähän tuon apukoskettimen tehtäväksi on ajateltu?

    Superi on hintakin, kun pelkkä tuollainen koje 90€

    “Jos shukossa lukee 16A se kestää 16A jatkuvan virran.”
    Väärin se kestää 8A jatkuvaa.

    “IEC:n standardin 60884-1 päivitys tunnetaan työnimellä super-schuko/high load profile plugs. Uusi pistoketyyppi saattaa tuoda helpotusta myös sähköautojen lataukseen, sillä tavallinen suko-pistoke sopii suoraan uuteen pistorasiaan, mutta pistorasian vahvistettu rakenne mahdollistaa nykyistä suuremman kuormituksen.
    Siinä missä nykyisten sukojen (CEE 7/7) lämpeneminen on testattu ja standardisoitu kestämään kahdeksan ampeerin jatkuva kuormitus ja tunnin hetkellinen kuormitus 22 ampeerin virralla, pitäisi uuden version kestää jatkuva 16 ampeerin kuormitus ja viiden tunnin kuormitus 26 ampeerin virralla.”

    Siten kun on standardi Super Schuloista niin asia voi olla OK. Nythän myyntimies voi myydä vaikka esimerkiksi Ulta High Current Socket nimellä mitä vain.

  5. Tomi Engdahl says:


    Sähköauton lataus 16A virralla on yleisimmin sähköautojen ja plug-in hybridi autoissa käytetty latauslaitteiden käyttämä maksimivirta 1, 2 tai 3 vaiheisessa latauksessa. Suomessa valtaosa kotitalouksista on varustettu 25A pääsulakkeilla, joka mahdollistaa sähkö-/plug-in hybridi ajoneuvon latauksen n. 16A latausvirralla 1, 2 tai 3 vaiheisesti.

    Kysymyksiä ja vastauksia:

    Kysymys 1: Voinko ladata 1-vaiheista sähkö-/plug-in hybridi autoa ladata normaalista suko pistorasiasta 16A latausvirralla?
    Vastaus: EI! Normaalia suko pistoketta ei ole suunniteltu käytettäväksi jatkuvaan 16A latausvirtaan. Perinteinen suko pistorasia kestää max. 10A latausvirran vahingoittumatta, suositus on 8A. Markkinoilla on tarjolla super suko nimellä pistorasioita, joiden virran kesto on suurempi, kuin normaalin sukopistorasia. Super suko pistorasian virran kestoksi on määritelty 16A, mutta se ei ole virallinen määritelmä. Ainoastaan testit ovat osoittaneet, että super suko kestää isompia virtoja paremmin, kuin perinteinen suko pistorasia.

  6. Tomi Engdahl says:


    Älä suosi pistorasiasta lataamista.
    Sähköautojen ja hybridien mukana tulee useimmiten latauskaapeli, jolla voit ladata sähköautosi kotipistorasian kautta. Nämä kaapelit on yleensä varustettu erilaisilla suojauksilla ylivirtojen estämiseksi. Vaikka itse latauskaapeli olisi suojattu ja määräysten mukainen, se ei kuitenkaan auta suojaamaan kotisi pistorasiaa ylikuumenemiselta. Tämä riski on erityisen suuri vanhemmissa talouksissa, joiden sähköasennukset ovat jo nähneet parhaat päivänsä. Paitsi että tavallisesta pistorasiasta lataaminen ei ole erityisen turvallista, se ei ole myöskään tehokasta tai taloudellisesti järkevää.

    Sähköauton lataaminen vahvistetulla pistorasialla (super-schuko).
    Entäpä sitten vahvistetut pistorasiat eli ns. super-schuko pistorasiat? Voisiko sellaisen käyttöönotto olla järkevä valinta? Toisinaan kyllä. Super-schuko on normaalia pistorasiaa parempi ratkaisu, sillä sen pitäisi teoriassa kestää jatkuvaa 16 A virtaa. Super-schuko -rasioita onkin asennettu paljon esimerkiksi taloyhtiöiden parkkipaikoille.

    Vaikka vahvistetun pistorasian asentaminen on halvempaa kuin latausaseman ostaminen, se ei kuitenkaan ole kestävä investointi pitkässä juoksussa. Lataus vahvistetulla pistorasialla kestää nimittäin kauan – se on vain hieman tavallista pistorasiaa nopeampi. Jos siis ajat paljon ja latailet usein, super-schuko -rasiasta lataaminen ei välttämättä ole toimivin ratkaisu. Tällöin onkin syytä harkita kiinteän latausaseman hankkimista.

    Voiko sähköauto syttyä tuleen?
    Kyllä voi, mutta toistaiseksi polttomoottoriautojen tulipalot ovat roimasti todennäköisempiä. Vuosittain Suomessa palaa noin 1300 henkilöautoa, ja koska palot ovat niin yleisiä, että niistä ei välttämättä edes uutisoida. Helsingin Sanomien mukaan viime vuosina Suomessa on kuitenkin palanut vain pari täyssähköautoa ja yksi lataushybridiauto. Tällä hetkellä yhtäkään sähköauton aiheuttamaa rakennuspaloa ei ole tilastoitu Suomessa.

  7. Tomi Engdahl says:


    Asennustandardin mukaan (SFS 6000:2017 722.531.3.101) lukuun ottamatta sähköisellä erotuksella suojattuja piirejä jokainen sähköajoneuvon liitäntäpiste pitää erikseen suojata mitoitustoimintavirraltaan enintään 30 mA vähintään tyypin A vikavirtasuojalla.

    Mikäli sähköauton latausasemassa on standardin SFS-EN 62196 mukainen pistorasia tai pistoke (eli käytännössä tyypin 2 pistorasia tai pistoke), tulee latauspisteen suojaus toteuttaa jommalla kummalla seuraavista tavoista:

    B-tyypin vikavirtasuojan käyttö
    A-tyypin vikavirtasuoja ja soveltuvat laitteet, joilla varmistetaan poiskytkentä tasasähkövikavirran ylittäessä 6 mA

    Näiden testaamiselle ei ole asennusstandardissa SFS 6000 mitään poikkeavia vaatimuksia: sama sääntö 30 mA sinimuotoisella vikavirralla testaamisesta pätee.

    Testaus on mutkatonta, mikäli vikavirtasuojaus toteutetaan latauslaitetta syöttävässä keskuksessa tai vikavirtasuojaan pääsee käsiksi avaamalla laitteen kannen. Suoraan latauspistorasiasta tai -pistokkeesta testaaminen ei onnistu pelkällä asennustesterillä, koska latausasema kytkee pistorasiaan tai pistokkeeseen jännitteen vasta kun siihen on kytketty auto tai latausasema luulee että siellä on auto. Näppärin – ja latauslaitteessa kuin latauslaitteessa toimiva – tapa testata vikavirtasuoja on käyttää valmista adapteria, joka kytketään latausaseman ja asennustesterin väliin.

    Tasavirtalatauslaitteilla (lataustapa 4, arkikielellä pikalaturi), suojauksen testaamista ei tarvitse eikä edes voi ilman kalliita erikoislaitteita tehdä. Standardissa todetaankin, että vaatimukset vikavirtasuojien käytölle syötettäessä sähköajoneuvoa käyttäen tasavirralla toimivaa SFS-EN 62196 mukaista ajoneuvopistoketta ovat harkittavana. Tasavirtalatauslaite on erillinen sähkölaite, jonka toimivuudesta vastaa valmistaja, ja sille on suoritettava valmistajan asennusohjeen mukaiset testit. Syöttävä asennus on toki tarkastettava (mm. aistinvarainen tarkastus, suojajohdinpiirin jatkuvuus ja riittävä oikosulkuvirta).

  8. Tomi Engdahl says:


    Schneider Electric on tuonut markkinoille nimenomaan sähköauton latauskäyttöön tarkoitetut B-tyypin vikavirtasuojat. Ne tarjoavat parhaan mahdollisen suojan Suomen olosuhteissa.
    Laajempaa suojausta B-tyypin vikavirtasuojalla
    Loppukäyttäjälle on tärkeää pystyä lataamaan ajoneuvoaan turvallisesti ja luotettavasti. Siksi latausaseman yhteyteen vaaditaan usein B-tyypin vikavirtasuoja, jonka suojausominaisuudet ovat perinteistä A-tyypin vikavirtasuojaa laajemmat latauksessa esiintyviä monitaajuuksisia vikavirtoja vastaan.

    virta-alue 25 – 63A
    vikavirta-arvo 30mA
    2- napaiset ja 4 – napaiset versiot
    täyttää sähköauton latausstandardin IEC 60364-7-722 vaatimukset
    voidaan varustaa apukoskettimilla
    toiminta testattu kylmissä olosuhteissa

  9. Tomi Engdahl says:


    Standardi SFS 6000-7-722

    Mode 1: Kevyiden sähköajoneuvojen lataus. Kevyeen pienitehoiseen sähköajoneuvoon (sähköpolkupyörät, -skootterit, yms.) kuuluvaa laturia syötetään vaihtosähköllä tavanomaisesta maadoitetusta hyväkuntoisesta 230 V kotitalouspistorasiasta, joka on suojattu kiinteään asennukseen kuuluvalla 30 mA vikavirtasuojalla.
    Mode 2: Hidas lataus. Jos ei ole käytettävissä varsinaista sähköauton lataustapaa 3 ja sen mukaista pistorasiaa tai ajoneuvopistoketta, voidaan käyttää tilapäisesti hidasta lataustapaa.
    Mode 3: Peruslataus. Sähköajoneuvossa olevaa laturia syötetään vaihtosähköllä ajoneuvoon kuuluvalla latausjohdolla erityisestä standardin SFS-EN 62196-2 mukaisesta tyypin 2 sähköautopisto-rasiasta.
    Mode 4: Teholataus. Sähköajoneuvon akustoa syötetään tasasähköllä suurella virralla auton ulkopuolella olevasta tasasähkölaturista. Teholatauksesta käytetään myös termiä pikalataus.
    Lähde: Sesko ry lataussuositus 2018 -pdf

  10. Tomi Engdahl says:


    B-tyypin vikavirtasuoja joka toimii kaikilla virroilla, puhdas vaihtovirta, sykkivä tasavirta ja puhdas tasavirta. Kestää myös jännitettä jonka taajuus on välillä 0 – 1000Hz.
    B-tyypin vikavirtasuojia käytetään erillaisissa sovelluksissa;
    sähköautojen latausasemat, taajuusmuuntajat, UPS-järjestelmät,
    hitsauslaitteet, rullaportaat, hissit jne. Asennukset joissa vikavirta tasavirta-asennuksissa on yli 6mA eivät toimi A-tyypin vikavirtasuojilla. Ei käy sovelluksiin joissa on puhdas tasavirta tai AC-generaattori muilla taajuuksilla kuin 50Hz.

  11. Tomi Engdahl says:


    Super-sukopistorasia 16A latauskäyttöön
    Kestää jatkuvaa 16A virtaa
    Super-suko latauspistorasialla teet latauksesta turvallista. Lisäksi latausjohdon suojalaiteyksikkö suositellaan tukemaan niin, ettei pistorasiaan kohdistu vääntö- eikä vetorasitusta.

    -Super-sukopistorasia latauskäyttöön

    -Pistorasia kestää jatkuvaa 16A virtaa

    -Hopeoidut koskettimet

    -Laippakoko 50x50mm

    -Reikäväli 38x38mm


    -Umpinaiset kosketintapit

    -Sopii suoraan esim. autolämmityspistorasian tilalle

  12. Tomi Engdahl says:

    Electric cars are doomed if fast charger reliability doesn’t get better
    If every driver has a horror story about charging, adoption is going to stall.
    by Jonathan M. Gitlin – Jul 14, 2022 1:20am EET

    In many regards, electric vehicles are clearly better than the internal combustion engine-powered relatives they will eventually replace. They’re quieter, they rattle and vibrate less, they accelerate faster, and they’re much more efficient because they can recover energy under braking. And their batteries should last for the life of the car as well as a gasoline engine does. But I’m increasingly convinced that EV adoption is going to run into real problems if we can’t get a handle on charger reliability.

    Even the biggest EV enthusiasts can’t ignore the fact that it takes a lot longer to recharge a battery than fill a tank with liquid hydrocarbons—even when that battery is connected to a very high-voltage DC fast charger. For about two-thirds of American car buyers—those who have somewhere at home to charge overnight—this isn’t a problem most of the time. On average, people only drive 29 miles a day, so even short-range EVs should actually meet the needs of most drivers.

  13. Tomi Engdahl says:


    Navitas Semiconductor on kalifornialainen tehoelektroniikkayritys, jonka GaNFast-piirit ovat esimerkiksi uuden OnePlus 10T-mallin 150 watin laturin taustalla. Nyt Navitas haluaa laajentaa osaamistaan myös sähköautojen lataukseen ja datakeskusten tehonsyöttöön.

    Navitas ilmoitti ostavansa piikarbidi- eli SiC-piirien pioneereihin kuuluvan GeneSiC Semiconductorin. Kyse on pienestä, mutta innovatiivisesta yrityksestä, jonka liikevaihto on tänä vuonna 25 miljoonaa dollaria. SiC on kuitenkin merkittävä laajennus Navitasille, sillä se laajentaa yhtiön tuotteiden tehoaluetta merkittävästi ylöspäin.

  14. Tomi Engdahl says:

    Unohda latausahdistus: 200 kilometriä ajoa viiden minuutin latauksella

    Sähköautoon liittyvää latausahdistusta yritetään nyt helpottaa monella tapaa. Kiinalainen Xpeng Motorsin ratkaisu on hypernopea lataus. Uusi S4-laturi syöttää yhtiön G9-malliin viidessä minuutissa tarpeeksi virtaa 200 kilometrin ajomatkaa varten. Käytännössä autonlataus lähestyy älypuhelimen pikalatausta.

    S4-latausasema on piikarbidipohjainen 800 voltin latausjärjestelmä, jonka maksimiteho on 480 kilowattia. S4 lataa 670 ampeerin virralla. G9-malli vastaanottaa latausvirtaa enimmillään 400 kilowatin teholla.

  15. Tomi Engdahl says:

    Sähköautojen latauslaitteita valmistava lahtelaisyritys lähti hurjaan nousukiitoon: Kempowerin liikevaihto kasvoi vuodessa yli 200 prosenttia

    Silti vasta prosentti Suomen autokannasta on täyssähköautoja. Tutkijan mukaan kuluttajat eivät hahmota käyttökustannusten eroa sähkö- ja polttomoottoriautojen välillä.

  16. Tomi Engdahl says:

    Sähköautojen lataustehoa rajoitetaan turhaan

    Sähköautojen lataus ja erityisesti pikalataus toimii käytännössä vaihtelevalla teholla. Laturi ja auton järjestelmä joutuvat ensin kommunikoimaan keskenään, ennen kuin lataus täydellä teholla voi käynnistyä. Sen jälkeen lataustehoa säädellään akun eliniän optimoimiseksi. Tämä näyttää olevan turhaa.

    Kalifornian yliopiston tutkijat ovat tutkineet latausta ohjaavia algoritmeja. Siinä missä nykyinen pikalataus täyttää akuston 90-prosenttisesti puolessa tunnissa, ohjausta säätämällä voidaan päästä samaan varaustilaan 10 minuutissa.

    New Scientist -lehdessä kerrotaan, että tavallinen latausprotokolla käynnistyy yleensä alhaisella teholla ja kiihtyy, mutta alkaa sitten laskea tehoa uudelleen 60 tai 70 prosentin akun latauksella välttääkseen akun tarpeettoman rasituksen. Jos latausalgoritmeja optimoidaan, saadaan akustoa ladattua suuremmalla teholla pidemmän aikaa.

    Käyttäen tietokonemalleja ja tarkistamalla todellisten akkujen tulokset tutkimusryhmä kehitti uuden latausprotokollan, joka voi ladata tavallisen sähköajoneuvon akun nollasta 90 prosenttiin 10 minuutissa. Samalla se pitää akun kunnossa, eikä siis lyhennä sen elinikää.

    Supercharging tweak could fill electric car batteries 90% in 10 mins

    A modification to the way electric cars are charged could allow them to get 90 per cent battery from nothing in just 10 minutes. A standard approach would take half an hour

    Tweaking the way electric vehicle batteries are charged could make it possible to hit 90 per cent charge within just 10 minutes from empty. By comparison, current methods usually require half an hour to fully charge an electric vehicle.

    A standard charging protocol usually starts at low power and ramps up, but then starts lowering the power again at 60 or 70 percent battery charge to avoid unnecessary stress on the battery, says Gil Tal at the University of California, Davis, who wasn’t involved with the study. “What [these researchers] are trying to do is to optimise this curve to get more time with higher power,” says Tal.

    Eric Dufek at the Idaho National Laboratory and his colleagues deployed artificially intelligent algorithms to look at how changing factors such as current and voltage impacts battery ageing over time. “You can do things like ramping voltage, or sequentially decreasing what the voltage or current looks like,” says Dufek.

    Using computer models and verifying the results on actual batteries, the team came up with a new charging protocol that can charge a standard electric vehicle battery from zero to 90 per cent in 10 minutes, while protecting the battery’s long-term health.

    The protocol could be implemented by updating the software in cars that controls electric vehicle charging. “What makes it really great is that it’s improvement with no cost,” says Tal. “With the existing infrastructure and existing technology, you can get some improvement.”

    But even the most optimised charging protocols will not be the main factor that enables extreme fast charging for most vehicles, says Tal. He expects the biggest improvements in vehicle charging times to come from new battery chemistries, bigger battery designs and faster charging station technology, along with car companies enhancing their battery pack designs.

  17. Tomi Engdahl says:

    Moni kärsii latausahdistuksesta

    Sähköautojen omistajat evät pysty rentoutumaan ajaessaan, kun katse suuntautuu koko ajan akun varaustilanteeseen. Mistä löytyy seuraavalatausasema? Onko se vapaana? Kuinka tehokas se on? Sama ilmiö on tuttu älypuhelimen käyttäjille. Nyt ilmiötä on tutkittu OnePlussan teettämässä tutkimuksessa.

    Tutkimuksen mukaan akun matala varaustaso aiheuttaa monelle stressiä. Useimmat eivät poistuisi kotoa, jos puhelimen akkua on jäljellä alle 20 prosenttia. Itse asiassa lähes kolme neljästä ihmisestä (73 prosenttia) sanoo, että he eivät haluaisi lähteä kotoa, jos heillä on puhelimessa akkua jäljellä alle 20 prosenttia.

  18. Tomi Engdahl says:

    High-power liquid-cooled EV charging cable

    The high-power DC charging cable uses liquid cooling technology to cool down, so that the charging cable maintains a low constant temperature during the charging process, and overcomes the thermal damage to the charging gun, charging cable, and charging pile, thereby increasing the charging current. The principle is to add a liquid cooling circulation system inside the cable, and allow the cooling system and the charging system to coexist through the sealed circulation connection inside the connector.

  19. Tomi Engdahl says:

    Top 3 design considerations for EV charging

    Available for both commercial and residential use, a typical electric vehicle (EV) charging station design includes energy metering, AC and DC residual current detection, isolation for safety compliance, relays and contactors with drive, two-way communication, and service and user interfaces. While the goal of a charging station is to efficiently transfer power to a vehicle, implementing that power transfer is just the beginning of its role.

    By 2030, an estimated 20 million public EV charging stations will connect to the grid, with residential charging stations expected to scale significantly to parallel the demand, according to recent reports from IHS Markit. An EV charging station design includes unique challenges. Electric vehicle supply equipment (EVSE) must incorporate communication, safety and security, while providing an easy upgrade path in order to accommodate the future of grid integration. In this article, I’ll briefly introduce three design considerations used in a scalable hardware and software demo using TI’s SitaraTm AM625 processor for a Level 2 AC EV charging station.

  20. Tomi Engdahl says:

    Building a fast, flexible EV charging network

    In our electric-vehicle future, semiconductor technology will offer grid operators more flexibility to better manage energy infrastructure

    The transition to electric vehicles (EVs) looks inevitable as governments around the world commit to sustainability goals and the auto industry plans to invest more than $330 billion through 2025 to advance vehicle electrification.

    But what happens when thousands of EVs in a community plug in simultaneously and place unprecedented demands on the electric grid?

  21. Tomi Engdahl says:

    Misconceptions about EV charging

    n this article, I’ll go over some misconceptions about EV charging.

    Misconception No. 1: You can charge an EV directly with AC power.

    Yes, there are EV chargers that will charge an EV directly with AC power, relying on the onboard charger to convert AC into DC and then ultimately charging the EV battery with DC. But there are also EV chargers that first convert AC power into DC and charge the EV battery directly by bypassing any onboard AC to DC conversion. Generally, DC chargers operate at higher power levels, which reduces charging times.

    Misconception No. 2: All EV charging stations use the same charging technology.

    EV charging stations use various technologies. There are chargers that directly charge the EV with AC power by leveraging the onboard charger to convert AC into DC.

    There are also EV chargers called DC chargers that convert AC into DC and directly charge the EV battery by bypassing the onboard AC to DC conversion. It is possible to adopt different power topologies for AC conversion to DC.

    Misconception No. 3: EV chargers have the same power levels.

    EV chargers (or charging piles) are divided into multiple power levels, as shown in Figure 1. Levels 1 and 2 are AC chargers up to 20 KW. Level 3 comprises fast DC chargers that are typically 50 KW and above and can go as high as 350 KW.

    Misconception No. 4: EV charging stations are operated by grid or electrical utility companies.

    This is not true. While it is possible for grid and utility companies to operate charging stations, some automakers operate their own network of charging stations, which other EVs can use. There are also third-party charging station network operators that are neither electric utility companies nor EV original equipment manufacturers.

    Misconception No. 5: High-level chargers are more power-efficient.

    Power topology, control method, and design and component selection can greatly affect the overall power efficiency of a charger. As an example, zero-voltage switching and zero-current switching power topologies can greatly reduce switching losses and therefore boost power efficiency.

    Misconception No. 6: High-voltage EV chargers are known for being less reliable.

    With new battery technologies emerging, car batteries are moving to voltages 800 V and higher. With this trend likely to continue, a common question that EV charger designers will have is how to maintain your isolation rating and system reliability.

    Misconception No. 7: EVs still require that drivers go to a charging station to “fill up” – just like gas stations.

    Many different options for charging at home are available, and consumers can automatically charge their EVs automatically when electricity rates are lower – at night, for example. Most modern homes, or those with an attached garage, will have 240-V plugs available that enable charging rates between 100 to 200 miles worth of range.

    Misconception No. 8: EVs take too long to charge, and DC charging stations don’t charge that much faster.

    A DC charging station is a Level 3 charger that can accommodate power levels in the range of 120 to 240 kW. This type of charging station uses an external charger to supply high-voltage (300 V to 750 V) DC at up to 400 A directly to the vehicle’s battery. Level 3 chargers typically charge batteries to an 80% state of charge in under 30 minutes.

    Misconception No. 9: There is no need for a wireless network between EV chargers and the cloud.

    Given the limited power supply that buildings have, it is necessary to have a wireless network between EV chargers and the cloud. A wireless network enables users to manage the overall EV charging load in real time.

    Additionally, a wireless network aids in controlling power distribution at each EV charging point. A wireless network also makes room for the possibility of saving electricity costs by charging EVs during off-peak hours.

    Misconception No. 10: Existing building infrastructures and parking spaces are already pre-wired for EV charging.

    When installing new EV charging stations, wireless connectivity is the most convenient solution.

    Misconception No. 11: Connectivity does not play a role in EV charging.

    Connectivity assists EV charging efforts by helping satisfy user interface and access control requirements. It enables the management of access control from the cloud, often through user smartphone apps. Additionally, connectivity permits the transmission of billing information and occupancy data to the cloud.

  22. Tomi Engdahl says:

    Alleviate Consumer Concerns with Fast, Flexible Charging Networks
    Sept. 8, 2022
    Sponsored by Texas Instruments: Whether improving accessibility, convenience, or affordability, semiconductor technology will be a key part of the charging infrastructure that will power the transition to electrification.

  23. Tomi Engdahl says:

    Charging an EV for $0 (Anker 757 PowerHouse)

    Energy prices are skyrocketing and I don’t want to pay this so I combined the The Anker power pack wit my small solar panels to recharge my electric car for free. It’s automated now without voiding the warranty to cycle charge it bit by bit.

    0:00 Intro
    1:00 Charging from grid tie
    3:05 Battery to EV
    3:55 Solar to battery
    5:48 The plan
    7:14 Making a microcontroller
    8:18 LDR display detection and actuators
    9:35 Prototype success
    10:37 Review: Testing all my tools
    11:56 Uninterruptable Power supply mode
    12:50 Final test: Solar to Battery to EV cycle
    13:43 kthxbye

  24. Tomi Engdahl says:

    Sähköauton suurin vika on tässä

    Reuters järjesti kesällä Automotive Europe 2022 -tapahtuman, jossa ruodittiin autoteollisuuden suurimpia haasteita. Konferenssin anti on nyt koottu yhteen. Sähköautojen suurimmaksi viaksi valmistajat näkevät sen, että se on tuotteena keskeneräinen. Silti autoja ryhdyttiin työntämään markkinoille ja kuluttajille.

    Ongelmia on monella sektorilla. Akuista ja niiden valmistamiseen tarvittavista raaka-aineista on pulaa. Latausinfra kasvaa, mutta on hyvin rajallinen edelleen. EU:n päätöksetkin yllättivät valmistajat.

    EU:n vaatimukset täyttääkseen sähköautojen valmistajien on valmistettava akustonsa Euroopassa. Tämän takia Eurooppaan suunnitellaan gigaluokan akkutehtaita. Myös materiaalit ovat iso ongelma. Vaikka niitä – vaikkapa litiumia – löytyisikin lisää, niiden hinnan kasvu nostaa myös sähköautojen hintoja. Tällöin kysyntä hiipuu.

    Akkuteknologia ei millään muotoa ole kehityksensä päässä. Mikäli akuston kokoa voitaisiin kutistaa vaikkapa 30 prosenttia, koko sähköauton suunnittelu voitaisiin ajatella uusiksi.

    Latausjärjestelmien kirjo on yksi ongelmista. Euroopassa on tällä hetkellä käytössä 28 erilaista latausjärjestelmää. Tämä on Geely Europen johtajan Frank Klaasin mukaan hankala tilanne. – Annamme kuluttajille laitteen, vaikka infra ei ole vielä kunnossa.

    Latausjärjestelmä koostuu paitsi latureista ja niiden löytämiseen kartalla, myös palveluista, jotka kertovat, missä on vapaa laturi. Myös laskutus pitää olla täysin automatisoitua. Ericssonin autopuolen johtaja Magnus Gunnarssonin mukaan ongelma on ekosysteemissä, ei teknologiassa. – Auto, latausasemat ja pankit ovat kaikki yhteydessä verkkoon, mutta eivät toisiinsa, Gunnarsson muistuttaa.

    Hänen mukaansa kyse ei ole niinkään latausahdistuksesta kuin epätietoisuudesta, mitä tapahtuu, kun latausasemalle ajaa. Kun auto on vaikkapa 20 minuuttia julkisessa latauspisteessä, sen ohjelmisto voitaisiin samalla automaattisesti päivittää 5G-vekron yli, Gunnarsson visioi.


Leave a Comment

Your email address will not be published. Required fields are marked *